MathNet.Numerics.FSharp 3.10.0

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports F# 3.0 on .Net 4.0, .Net 3.5 and Mono on Windows, Linux and Mac; Silverlight 5 and Windows 8 with PCL portable profile 47; Android/iOS with Xamarin.

There is a newer version of this package available.
See the version list below for details.
Install-Package MathNet.Numerics.FSharp -Version 3.10.0
dotnet add package MathNet.Numerics.FSharp --version 3.10.0
<PackageReference Include="MathNet.Numerics.FSharp" Version="3.10.0" />
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add MathNet.Numerics.FSharp --version 3.10.0
The NuGet Team does not provide support for this client. Please contact its maintainers for support.

Release Notes

Statistics: single-precision floating point support.
Statistics: very limited support for int32 and complex numbers.
Statistics: Min/Max Absolute, MagnitudePhase (complex).
Statistics: FiveNumberSummary to use actual Median instead of R8 quantile.
Linear Algebra: matrix Rank to use relative epsilon.
Linera Algebra: extensions to convert between single/double precision, complex/real.
Linear Algebra: Vector/Matrix storage DataContracts for ephemeral serialization.
Regression: more helpful exceptions and messages.
Random: 'Next' integer sampling no longer involves floating points, avoids one-off error in MersenneTwister.
Precision: EpsilonOf for single-precision numbers, drop no longer needed portable fallbacks.

Showing the top 2 GitHub repositories that depend on MathNet.Numerics.FSharp:

Repository Stars
mathnet/mathnet-numerics
Math.NET Numerics
NethermindEth/nethermind
Our flagship .NET Core Ethereum client for Linux, Windows, MacOs - full and actively developed

Version History

Version Downloads Last updated
4.9.0 193 10/13/2019
4.8.1 6,794 6/11/2019
4.8.0 835 6/2/2019
4.8.0-beta02 82 5/30/2019
4.8.0-beta01 110 4/28/2019
4.7.0 25,857 11/11/2018
4.6.0 1,672 10/19/2018
4.5.1 18,102 5/22/2018
4.5.0 259 5/22/2018
4.4.1 529 5/6/2018
4.4.0 11,057 2/25/2018
4.3.0 296 2/24/2018
4.2.0 467 2/21/2018
4.1.0 527 2/19/2018
4.0.0 1,978 2/11/2018
4.0.0-beta07 254 2/10/2018
4.0.0-beta06 263 2/3/2018
4.0.0-beta05 256 1/22/2018
4.0.0-beta04 280 1/13/2018
4.0.0-beta03 266 1/9/2018
4.0.0-beta02 341 1/7/2018
4.0.0-beta01 241 1/7/2018
4.0.0-alpha04 233 1/5/2018
4.0.0-alpha03 241 12/26/2017
4.0.0-alpha02 268 11/30/2017
4.0.0-alpha01 226 11/26/2017
3.20.2 3,400 1/22/2018
3.20.1 467 1/13/2018
3.20.0 25,435 7/15/2017
3.20.0-beta01 296 5/31/2017
3.19.0 5,472 4/29/2017
3.18.0 3,101 4/9/2017
3.17.0 7,530 1/15/2017
3.16.0 862 1/3/2017
3.15.0 417 12/27/2016
3.14.0-beta03 314 11/20/2016
3.14.0-beta02 284 11/15/2016
3.14.0-beta01 325 10/30/2016
3.13.1 52,859 9/6/2016
3.13.0 678 8/18/2016
3.12.0 2,657 7/3/2016
3.11.1 2,454 4/24/2016
3.11.0 5,075 2/13/2016
3.10.0 3,508 12/30/2015
3.9.0 1,799 11/25/2015
3.8.0 19,266 9/26/2015
3.7.1 3,148 9/21/2015
3.7.0 7,864 5/9/2015
3.6.0 1,594 3/22/2015
3.5.0 2,257 1/10/2015
3.4.0 544 1/4/2015
3.3.0 1,563 11/26/2014
3.3.0-beta2 357 10/25/2014
3.3.0-beta1 408 9/28/2014
3.2.3 20,435 9/6/2014
3.2.2 416 9/5/2014
3.2.1 600 8/5/2014
3.2.0 382 8/5/2014
3.1.0 3,108 7/20/2014
3.0.2 793 6/26/2014
3.0.1 428 6/24/2014
3.0.0 905 6/21/2014
3.0.0-beta05 422 6/20/2014
3.0.0-beta04 391 6/15/2014
3.0.0-beta03 407 6/5/2014
3.0.0-beta02 401 5/29/2014
3.0.0-beta01 726 4/14/2014
3.0.0-alpha9 399 3/29/2014
3.0.0-alpha8 402 2/26/2014
3.0.0-alpha7 457 12/30/2013
3.0.0-alpha6 523 12/2/2013
3.0.0-alpha5 502 10/2/2013
3.0.0-alpha4 452 9/22/2013
3.0.0-alpha1 395 9/1/2013
2.6.0 6,663 7/26/2013
2.5.0 1,059 4/14/2013
2.4.0 747 2/3/2013
2.3.0 711 11/25/2012
2.2.1 743 8/29/2012
2.2.0 522 8/27/2012
2.1.2 1,744 10/9/2011
2.1.1 685 10/3/2011
2.1.0.19 652 10/3/2011
Show less