MathNet.Numerics.FSharp 4.7.0

F# Modules for Math.NET Numerics, the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net Framework 4.5 or higher and .Net Standard 1.6 or higher, on Windows, Linux and Mac.

There is a newer version of this package available.
See the version list below for details.
Install-Package MathNet.Numerics.FSharp -Version 4.7.0
dotnet add package MathNet.Numerics.FSharp --version 4.7.0
<PackageReference Include="MathNet.Numerics.FSharp" Version="4.7.0" />
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add MathNet.Numerics.FSharp --version 4.7.0
The NuGet Team does not provide support for this client. Please contact its maintainers for support.

Release Notes

Special Functions: Airy functions Ai, Bi ~Jong Hyun Kim
Special Functions: Bessel functions of the first and second kind ~Jong Hyun Kim
Special Functions: Modified Bessel functions of the first and second kind ~Jong Hyun Kim
Special Functions: Spherical Bessel functions of the first and second kind ~Jong Hyun Kim
Special Functions: Hankel functions of the first and second kind ~Jong Hyun Kim
Special Functions: Kelvin functions of the first and second kind, and derivatives ~Jong Hyun Kim
Linear Algebra: optimized sparse implementation of transpose-multiply ~Richard Reader
Linear Algebra: optimized range checking in vectors and matrices

Showing the top 2 GitHub repositories that depend on MathNet.Numerics.FSharp:

Repository Stars
mathnet/mathnet-numerics
Math.NET Numerics
NethermindEth/nethermind
Our flagship .NET Core Ethereum client for Linux, Windows, MacOs - full and actively developed

Version History

Version Downloads Last updated
4.9.0 175 10/13/2019
4.8.1 6,696 6/11/2019
4.8.0 835 6/2/2019
4.8.0-beta02 82 5/30/2019
4.8.0-beta01 110 4/28/2019
4.7.0 25,831 11/11/2018
4.6.0 1,671 10/19/2018
4.5.1 18,100 5/22/2018
4.5.0 259 5/22/2018
4.4.1 529 5/6/2018
4.4.0 11,056 2/25/2018
4.3.0 295 2/24/2018
4.2.0 467 2/21/2018
4.1.0 527 2/19/2018
4.0.0 1,977 2/11/2018
4.0.0-beta07 254 2/10/2018
4.0.0-beta06 263 2/3/2018
4.0.0-beta05 256 1/22/2018
4.0.0-beta04 280 1/13/2018
4.0.0-beta03 266 1/9/2018
4.0.0-beta02 341 1/7/2018
4.0.0-beta01 241 1/7/2018
4.0.0-alpha04 233 1/5/2018
4.0.0-alpha03 241 12/26/2017
4.0.0-alpha02 268 11/30/2017
4.0.0-alpha01 226 11/26/2017
3.20.2 3,398 1/22/2018
3.20.1 467 1/13/2018
3.20.0 25,414 7/15/2017
3.20.0-beta01 296 5/31/2017
3.19.0 5,472 4/29/2017
3.18.0 3,100 4/9/2017
3.17.0 7,525 1/15/2017
3.16.0 862 1/3/2017
3.15.0 417 12/27/2016
3.14.0-beta03 314 11/20/2016
3.14.0-beta02 284 11/15/2016
3.14.0-beta01 325 10/30/2016
3.13.1 52,838 9/6/2016
3.13.0 678 8/18/2016
3.12.0 2,657 7/3/2016
3.11.1 2,454 4/24/2016
3.11.0 5,075 2/13/2016
3.10.0 3,507 12/30/2015
3.9.0 1,798 11/25/2015
3.8.0 19,256 9/26/2015
3.7.1 3,148 9/21/2015
3.7.0 7,864 5/9/2015
3.6.0 1,594 3/22/2015
3.5.0 2,256 1/10/2015
3.4.0 544 1/4/2015
3.3.0 1,563 11/26/2014
3.3.0-beta2 357 10/25/2014
3.3.0-beta1 408 9/28/2014
3.2.3 20,435 9/6/2014
3.2.2 415 9/5/2014
3.2.1 599 8/5/2014
3.2.0 381 8/5/2014
3.1.0 3,106 7/20/2014
3.0.2 790 6/26/2014
3.0.1 426 6/24/2014
3.0.0 903 6/21/2014
3.0.0-beta05 422 6/20/2014
3.0.0-beta04 391 6/15/2014
3.0.0-beta03 407 6/5/2014
3.0.0-beta02 401 5/29/2014
3.0.0-beta01 726 4/14/2014
3.0.0-alpha9 399 3/29/2014
3.0.0-alpha8 402 2/26/2014
3.0.0-alpha7 457 12/30/2013
3.0.0-alpha6 523 12/2/2013
3.0.0-alpha5 502 10/2/2013
3.0.0-alpha4 452 9/22/2013
3.0.0-alpha1 395 9/1/2013
2.6.0 6,663 7/26/2013
2.5.0 1,059 4/14/2013
2.4.0 747 2/3/2013
2.3.0 711 11/25/2012
2.2.1 743 8/29/2012
2.2.0 522 8/27/2012
2.1.2 1,744 10/9/2011
2.1.1 685 10/3/2011
2.1.0.19 652 10/3/2011
Show less