Simplee.Goa
1.0.15
Lambda calculus implementation using FSharp. The library exposes the classic combinators, boolean algebra, numeral agebra using Church numerals, pairs algebra.
Combinators: S, K, I, M, KI, C, B, Th, B1, V
Boolean: GTrue, GFalse, GAnd, GOr, GBeq
Numerals: G0, G1, G2, GSucc, GPred, GAdd, GSum, GMul, GPow, LEq, Eq, Gr
Pairs: GPair, GFst, GSnd, GPhi
InstallPackage Simplee.Goa Version 1.0.15
dotnet add package Simplee.Goa version 1.0.15
<PackageReference Include="Simplee.Goa" Version="1.0.15" />
paket add Simplee.Goa version 1.0.15
Simplee.Goa
Project which implements lambda calculus parser, and interpreter.
goa > ast
Contains the definitions of the lambda calculus grammar. Here is an example of the lambda terms:
type GIdentifier = string
type GExpression =
 GVar of GIdentifier
 GApp of GExpression * GExpression
 GLambda of GIdentifier * GExpression
goa > ofstr
Parses strings and converts them to lambda expressions. The implementation is using the FParse library.
Here are several examples of valid strings which are parsed into lambda expressions.
In the following example, we get a lambda expression from a given string.
"""\x > (x y)""" > gexpr
"""\a b > b""" > gexpr
The results of parsing these strings are equivalent to the following lambda expressions built using the provided infix operators:
"x" .>> ("x" .<<. "y")
"a" .>> ("b" .>> ("b" > gvar))
goa > combinators
The library provides the standard lambda combinators: S, K, I, M, KI, C, B, Th, B1, V, Y
let sum = "f" .>> ("n" .>> (GIs0 <<. "n" << G0 << ("n" .<< GSucc << ("f" .<< (GPred <<. "n")))))
let g6 = Y << sum << G3
goa > eval
The library implements evalalization function for lambda expression using beta reduction.
There are several convenience variations for such evaluation function where you can pass
a logging function, the depth of the evaluation, and a lookup function to replace variables.
// Function with complete list of arguments: logger, depth, lookup
GAnd << GTrue << GTrue > evalLR logr 100 (fun _ > None)
// Slim function where the logger is skipped and the depth is set by default to 1000.
// In this example the lookup will replace the 'myID' variable with the ID combinator.
GAnd << GTrue << GTrue > evald0 (fun s > if s = "myID" then I > Some else None)
goa > bool
The library defines Boolean algebra (GTrue, GFalse, GNot, GOr, GAnd, GBeq)
let gfalse = GNot << GTrue > evald0
let gfalse1 = GAnd << GTrue << GFalse > evald0
goa > numerals
The library defines Numerals algebra:
G0, G1, G2, ...  Church numerals
GSucc, GPred  successor and presecessor
GAdd, GSub, GMul, GPow  add, sub, multiplication, power
GIs0, GEq, GLEq, GGr  is zero, equal, less or equal, and greater
let g3 = GAdd << G1 << G2 > evald0
let g8 = GPow << G2 << G3 > evald0
let g7 = GPred << g8
leg gfalse = GIs0 << G1 > evald0
let gtrue = GLEq << G1 << G3 > evald0
let gfalse = GGr << G1 << G2 > evald0
goa > pairs
The library defines Pairs algebra (GPair, GFst, GSnd, GPhi).
The phi combinator takes a pair (_, Gn) and returns (Gn, Gn+1).
let pair = GPair << G1 << G2
let g1 = GFst << pair
let g2 = GSnd << pair
let g2a = GFst << GPhi << pair
let g3 = GSnd << GPhi << pair
Simplee.Goa
Project which implements lambda calculus parser, and interpreter.
goa > ast
Contains the definitions of the lambda calculus grammar. Here is an example of the lambda terms:
type GIdentifier = string
type GExpression =
 GVar of GIdentifier
 GApp of GExpression * GExpression
 GLambda of GIdentifier * GExpression
goa > ofstr
Parses strings and converts them to lambda expressions. The implementation is using the FParse library.
Here are several examples of valid strings which are parsed into lambda expressions.
In the following example, we get a lambda expression from a given string.
"""\x > (x y)""" > gexpr
"""\a b > b""" > gexpr
The results of parsing these strings are equivalent to the following lambda expressions built using the provided infix operators:
"x" .>> ("x" .<<. "y")
"a" .>> ("b" .>> ("b" > gvar))
goa > combinators
The library provides the standard lambda combinators: S, K, I, M, KI, C, B, Th, B1, V, Y
let sum = "f" .>> ("n" .>> (GIs0 <<. "n" << G0 << ("n" .<< GSucc << ("f" .<< (GPred <<. "n")))))
let g6 = Y << sum << G3
goa > eval
The library implements evalalization function for lambda expression using beta reduction.
There are several convenience variations for such evaluation function where you can pass
a logging function, the depth of the evaluation, and a lookup function to replace variables.
// Function with complete list of arguments: logger, depth, lookup
GAnd << GTrue << GTrue > evalLR logr 100 (fun _ > None)
// Slim function where the logger is skipped and the depth is set by default to 1000.
// In this example the lookup will replace the 'myID' variable with the ID combinator.
GAnd << GTrue << GTrue > evald0 (fun s > if s = "myID" then I > Some else None)
goa > bool
The library defines Boolean algebra (GTrue, GFalse, GNot, GOr, GAnd, GBeq)
let gfalse = GNot << GTrue > evald0
let gfalse1 = GAnd << GTrue << GFalse > evald0
goa > numerals
The library defines Numerals algebra:
G0, G1, G2, ...  Church numerals
GSucc, GPred  successor and presecessor
GAdd, GSub, GMul, GPow  add, sub, multiplication, power
GIs0, GEq, GLEq, GGr  is zero, equal, less or equal, and greater
let g3 = GAdd << G1 << G2 > evald0
let g8 = GPow << G2 << G3 > evald0
let g7 = GPred << g8
leg gfalse = GIs0 << G1 > evald0
let gtrue = GLEq << G1 << G3 > evald0
let gfalse = GGr << G1 << G2 > evald0
goa > pairs
The library defines Pairs algebra (GPair, GFst, GSnd, GPhi).
The phi combinator takes a pair (_, Gn) and returns (Gn, Gn+1).
let pair = GPair << G1 << G2
let g1 = GFst << pair
let g2 = GSnd << pair
let g2a = GFst << GPhi << pair
let g3 = GSnd << GPhi << pair
Release Notes
Fixed several bugs in the evaluation logic. Added quote and bracket abstraction mechanism.
Dependencies

.NETCoreApp 2.0
 FParsec (>= 1.0.3)
 FSharp.Core (>= 4.3.3)
 Simplee.Common (>= 1.0.2)