DotMake.CommandLine 1.8.7

dotnet add package DotMake.CommandLine --version 1.8.7
NuGet\Install-Package DotMake.CommandLine -Version 1.8.7
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DotMake.CommandLine" Version="1.8.7" />
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add DotMake.CommandLine --version 1.8.7
#r "nuget: DotMake.CommandLine, 1.8.7"
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install DotMake.CommandLine as a Cake Addin
#addin nuget:?package=DotMake.CommandLine&version=1.8.7

// Install DotMake.CommandLine as a Cake Tool
#tool nuget:?package=DotMake.CommandLine&version=1.8.7

DotMake Command-Line Logo

DotMake Command-Line

System.CommandLine is a very good parser but you need a lot of boilerplate code to get going and the API is hard to discover. This becomes complicated to newcomers and also you would have a lot of ugly code in your Program.cs to maintain. What if you had an easy class-based layer combined with a good parser?

DotMake.CommandLine is a library which provides declarative syntax for System.CommandLine via attributes for easy, fast, strongly-typed (no reflection) usage. The library includes includes a source generator which automagically converts your classes to CLI commands and properties to CLI options or CLI arguments. Supports trimming, AOT compilation and dependency injection!

Nuget

DotMake Command-Line Intro

Getting started

Install the library to your console app project with NuGet.

In your project directory, via dotnet cli:

dotnet add package DotMake.CommandLine

or in Visual Studio Package Manager Console:

PM> Install-Package DotMake.CommandLine

Prerequisites

  • .NET 7.0 and later project or .NET Standard 2.0 and later project.
    Note that .NET Framework 4.7.2+ or .NET Core 2.0 to NET 6.0 projects can reference our netstandard2.0 target (automatic in nuget).
    If your target framework is below net5.0, you also need <LangVersion>9.0</LangVersion> tag (minimum) in your .csproj file.
  • Visual Studio 2022 v17.3+ or .NET SDK 6.0.407+ (when building via dotnet cli).
    Our incremental source generator requires performance features added first in these versions.
  • Usually a console app project but you can also use a class library project which will be consumed later.

Usage

Delegate-based model

Create a CLI App with DotMake.Commandline in seconds!

In Program.cs, add this simple code:

using System;
using DotMake.CommandLine;

Cli.Run(([CliArgument]string arg1, bool opt1) =>
{
    Console.WriteLine($@"Value for {nameof(arg1)} parameter is '{arg1}'");
    Console.WriteLine($@"Value for {nameof(opt1)} parameter is '{opt1}'");
});

And that's it! You now have a fully working command-line app.

Summary
  • Pass a delegate (a parenthesized lambda expression or a method reference) which has parameters that represent your options and arguments, to Cli.Run.
  • A parameter is by default considered as a CLI option but you can;
    • Mark a parameter with CliArgument attribute to make it a CLI argument and specify settings (see CliArgumentAttribute docs for more info).
    • Mark a parameter with CliOption attribute to specify CLI option settings (see CliOptionAttribute docs for more info).
    • Mark the delegate itself with CliCommand attribute to specify CLI command settings (see CliCommandAttribute docs for more info).
    • Note that for being able to mark a parameter with an attribute in an anonymous lambda function, if your target framework is below net6.0, you also need <LangVersion>10.0</LangVersion> tag (minimum) in your .csproj file.
  • Set a default value for a parameter if you want it to be optional (not required to be specified on the command-line).
  • Your delegate can be async.
  • Your delegate can have a return type void or int and if it's async Task or Task<int>.

Class-based model

While delegate-based model above is useful for simple apps, for more complex apps, you should use the class-based model because you can have sub-commands and command inheritance.

In Program.cs, add this simple code:

using System;
using DotMake.CommandLine;

// Add this single line to run you app!
Cli.Run<RootCliCommand>(args);

// Create a simple class like this to define your root command:
[CliCommand(Description = "A root cli command")]
public class RootCliCommand
{
    [CliOption(Description = "Description for Option1")]
    public string Option1 { get; set; } = "DefaultForOption1";
 
    [CliArgument(Description = "Description for Argument1")]
    public string Argument1 { get; set; }
 
    public void Run()
    {
        Console.WriteLine($@"Handler for '{GetType().FullName}' is run:");
        Console.WriteLine($@"Value for {nameof(Option1)} property is '{Option1}'");
        Console.WriteLine($@"Value for {nameof(Argument1)} property is '{Argument1}'");
        Console.WriteLine();
    }
}

And that's it! You now have a fully working command-line app. You just specify the name of your class which represents your root command to Cli.Run<> method and everything is wired.

args is the string array typically passed to a program. This is usually the special variable args available in Program.cs (new style with top-level statements) or the string array passed to the program's Main method (old style). We also have method signatures which does not require args, for example you can also call Cli.Run<RootCliCommand>() and in that case args will be retrieved automatically from the current process via Cli.GetArgs().

If you want to go async, just use this:

await Cli.RunAsync<RootCliCommand>(args);

To handle exceptions, you just use a try-catch block:

try
{
    Cli.Run<RootCliCommand>(args);
}
catch (Exception e)
{
    Console.WriteLine(@"Exception in main: {0}", e.Message);
}

System.CommandLine, by default overtakes your exceptions that are thrown in command handlers (even if you don't set an exception handler explicitly) but DotMake.CommandLine, by default allows the exceptions to pass through. However if you wish, you can easily use the default exception handler by passing a CliSettings instance like below. Default exception handler prints the exception in red color to console:

Cli.Run<RootCliCommand>(args, new CliSettings { EnableDefaultExceptionHandler = true });

If you need to simply parse the command-line arguments without invocation, use this:

var parseResult = Cli.Parse<RootCliCommand>(args);
var rootCliCommand = parseResult.Bind<RootCliCommand>();

If you need to examine the parse result, such as errors:

var parseResult = Cli.Parse<RootCliCommand>(args);
if (parseResult.Errors.Count > 0)
{

}
Summary
  • Mark the class with CliCommand attribute to make it a CLI command (see CliCommandAttribute docs for more info).

  • Mark a property with CliOption attribute to make it a CLI option (see CliOptionAttribute docs for more info).

  • Mark a property with CliArgument attribute to make it a CLI argument (see CliArgumentAttribute docs for more info).

  • Add a method with name Run or RunAsync to make it the handler for the CLI command. The method can have one of the following signatures:

    • void Run()
      
    • int Run()
      
    • async Task RunAsync()
      
    • async Task<int> RunAsync()
      

    Optionally the method signature can have a CliContext parameter in case you need to access it:

    • Run(CliContext context)
      
    • RunAsync(CliContext context)
      

    The signatures which return int value, sets the ExitCode of the app. If no handler method is provided, then by default it will show help for the command. This can be also controlled manually by extension method ShowHelp in CliContext. Other extension methods IsEmptyCommand and ShowValues are also useful.

  • Call Cli.Run<> orCli.RunAsync<> method with your class name to run your CLI app (see Cli docs for more info).

  • For best practice, create a subfolder named Commands in your project and put your command classes there so that they are easy to locate and maintain in the future.

Commands

A command in command-line input is a token that specifies an action or defines a group of related actions. For example:

  • In dotnet run, run is a command that specifies an action.
  • In dotnet tool install, install is a command that specifies an action, and tool is a command that specifies a group of related commands. There are other tool-related commands, such as tool uninstall, tool list, and tool update.

Root commands

The root command is the one that specifies the name of the app's executable. For example, the dotnet command specifies the dotnet.exe executable.

Subcommands

Most command-line apps support subcommands, also known as verbs. For example, the dotnet command has a run subcommand that you invoke by entering dotnet run.

Subcommands can have their own subcommands. In dotnet tool install, install is a subcommand of tool.

Command Hierarchy

Defining sub-commands in DotMake.Commandline is very easy. We simply use nested classes to create a hierarchy. Just make sure you apply CliCommand attribute to the nested classes as well. Command hierarchy in below example is:
RootWithNestedChildrenCliCommandLevel1SubCliCommandLevel2SubCliCommand

[CliCommand(Description = "A root cli command with nested children")]
public class RootWithNestedChildrenCliCommand
{
    [CliOption(Description = "Description for Option1")]
    public string Option1 { get; set; } = "DefaultForOption1";

    [CliArgument(Description = "Description for Argument1")]
    public string Argument1 { get; set; }

    public void Run(CliContext context)
    {
        context.ShowValues();
    }

    [CliCommand(Description = "A nested level 1 sub-command")]
    public class Level1SubCliCommand
    {
        [CliOption(Description = "Description for Option1")]
        public string Option1 { get; set; } = "DefaultForOption1";

        [CliArgument(Description = "Description for Argument1")]
        public string Argument1 { get; set; }

        public void Run(CliContext context)
        {
            context.ShowValues();
        }

        [CliCommand(Description = "A nested level 2 sub-command")]
        public class Level2SubCliCommand
        {
            [CliOption(Description = "Description for Option1")]
            public string Option1 { get; set; } = "DefaultForOption1";

            [CliArgument(Description = "Description for Argument1")]
            public string Argument1 { get; set; }

            public void Run(CliContext context)
            {
                context.ShowValues();
            }
        }
    }
}

Another way to create hierarchy between commands, especially if you want to use standalone classes,
is to use Parent property of CliCommand attribute to specify typeof parent class. Consider you have this root command:

[CliCommand(Description = "A root cli command with external children and one nested child and testing settings inheritance")]
public class RootWithExternalChildrenCliCommand
{
    [CliOption(Description = "Description for Option1")]
    public string Option1 { get; set; } = "DefaultForOption1";

    [CliArgument(Description = "Description for Argument1")]
    public string Argument1 { get; set; }

    public void Run(CliContext context)
    {
        context.ShowValues();
    }

    [CliCommand(
        Description = "A nested level 1 sub-command with custom settings, throws test exception",
        NameCasingConvention = CliNameCasingConvention.SnakeCase,
        NamePrefixConvention = CliNamePrefixConvention.ForwardSlash,
        ShortFormPrefixConvention = CliNamePrefixConvention.ForwardSlash
    )]
    public class Level1SubCliCommand
    {
        [CliOption(Description = "Description for Option1")]
        public string Option1 { get; set; } = "DefaultForOption1";

        [CliArgument(Description = "Description for Argument1")]
        public string Argument1 { get; set; }

        public void Run()
        {
            throw new Exception("This is a test exception from Level1SubCliCommand");
        }
    }
}

Command hierarchy in below example is:
RootWithExternalChildrenCliCommandExternalLevel1SubCliCommandLevel2SubCliCommand

[CliCommand(
    Description = "An external level 1 sub-command",
    Parent = typeof(RootWithExternalChildrenCliCommand)
)]
public class ExternalLevel1SubCliCommand
{
    [CliOption(Description = "Description for Option1")]
    public string Option1 { get; set; } = "DefaultForOption1";

    [CliArgument(Description = "Description for Argument1")]
    public string Argument1 { get; set; }

    public void Run(CliContext context)
    {
        context.ShowValues();
    }

    [CliCommand(Description = "A nested level 2 sub-command")]
    public class Level2SubCliCommand
    {
        [CliOption(Description = "Description for Option1")]
        public string Option1 { get; set; } = "DefaultForOption1";

        [CliArgument(Description = "Description for Argument1")]
        public string Argument1 { get; set; }

        public void Run(CliContext context)
        {
            context.ShowValues();
        }
    }
}

Command hierarchy in below example is:
RootWithExternalChildrenCliCommandLevel1SubCliCommandExternalLevel2SubCliCommandLevel3SubCliCommand

[CliCommand(
    Description = "An external level 2 sub-command",
    Parent = typeof(RootWithExternalChildrenCliCommand.Level1SubCliCommand),
    NameCasingConvention = CliNameCasingConvention.SnakeCase,
    NamePrefixConvention = CliNamePrefixConvention.ForwardSlash,
    ShortFormPrefixConvention = CliNamePrefixConvention.ForwardSlash
)]
public class ExternalLevel2SubCliCommand
{
    [CliOption(Description = "Description for Option1")]
    public string Option1 { get; set; } = "DefaultForOption1";

    [CliArgument(Description = "Description for Argument1")]
    public string Argument1 { get; set; }

    public void Run(CliContext context)
    {
        context.ShowValues();
    }

    [CliCommand(Description = "A nested level 3 sub-command")]
    public class Level3SubCliCommand
    {
        [CliOption(Description = "Description for Option1")]
        public string Option1 { get; set; } = "DefaultForOption1";

        [CliArgument(Description = "Description for Argument1")]
        public string Argument1 { get; set; }

        public void Run(CliContext context)
        {
            context.ShowValues();
        }
    }
}

The class that CliCommand attribute is applied to,

  • will be a root command if the class is not a nested class and Parentproperty is not set.
  • will be a sub command if the class is a nested class or Parent property is set.
Accessing parent commands

Sub-commands can get a reference to the parent command by adding a property of the parent command type.
Alternatively ParseResult.Bind<TDefinition> method can be called to manually get reference to a parent command.
Note that binding will be done only once per definition class, so calling this method consecutively for the same definition class will return the cached result.

// Sub-commands can get a reference to the parent command by adding a property of the parent command type.

[CliCommand(Description = "A root cli command with children that can access parent commands")]
public class ParentCommandAccessorCliCommand
{
    [CliOption(
        Description = "This is a global option (Recursive option on the root command), it can appear anywhere on the command line",
        Recursive = true)]
    public string GlobalOption1 { get; set; } = "DefaultForGlobalOption1";

    [CliArgument(Description = "Description for RootArgument1")]
    public string RootArgument1 { get; set; }

    public void Run(CliContext context)
    {
        context.ShowValues();
    }

    [CliCommand(Description = "A nested level 1 sub-command which accesses the root command")]
    public class Level1SubCliCommand
    {
        [CliOption(
            Description = "This is global for all sub commands (it can appear anywhere after the level-1 verb)",
            Recursive = true)]
        public string Level1RecursiveOption1 { get; set; } = "DefaultForLevel1RecusiveOption1";

        [CliArgument(Description = "Description for Argument1")]
        public string Argument1 { get; set; }

        // The parent command gets automatically injected
        public ParentCommandAccessorCliCommand RootCommand { get; set; }

        public void Run(CliContext context)
        {
            context.ShowValues();
        }

        [CliCommand(Description = "A nested level 2 sub-command which accesses its parent commands")]
        public class Level2SubCliCommand
        {
            [CliOption(Description = "Description for Option1")]
            public string Option1 { get; set; } = "DefaultForOption1";

            [CliArgument(Description = "Description for Argument1")]
            public string Argument1 { get; set; }

            // All ancestor commands gets injected
            public ParentCommandAccessorCliCommand RootCommand { get; set; }
            public Level1SubCliCommand ParentCommand { get; set; }

            public void Run(CliContext context)
            {
                context.ShowValues();

                Console.WriteLine();
                Console.WriteLine(@$"Level1RecursiveOption1 = {ParentCommand.Level1RecursiveOption1}");
                Console.WriteLine(@$"parent Argument1 = {ParentCommand.Argument1}");
                Console.WriteLine(@$"GlobalOption1 = {RootCommand.GlobalOption1}");
                Console.WriteLine(@$"RootArgument1 = {RootCommand.RootArgument1}");
            }
        }
    }
}

Command Inheritance

When you have repeating/common options and arguments for your commands, you can define them once in a base class and then share them by inheriting that base class in other command classes. Interfaces are also supported !

[CliCommand]
public class InheritanceCliCommand : CredentialCommandBase, IDepartmentCommand
{
    public string Department { get; set; } = "Accounting";
}

public abstract class CredentialCommandBase
{
    [CliOption(Description = "Username of the identity performing the command")]
    public string Username { get; set; } = "admin";

    [CliOption(Description = "Password of the identity performing the command")]
    public string Password { get; set; }

    public void Run()
    {
        Console.WriteLine($@"I am {Username}");
    }
}

public interface IDepartmentCommand
{
    [CliOption(Description = "Department of the identity performing the command (interface)")]
    string Department { get; set; }
}

The property attribute and the property initializer from the most derived class in the hierarchy will be used (they will override the base ones). The command handler (Run or RunAsync) will be also inherited. So in the above example, InheritanceCliCommand inherits options Username, Password from a base class and option Department from an interface. Note that the property initializer for Department is in the derived class, so that default value will be used.


The properties for CliCommand attribute (see CliCommandAttribute docs for more info):

  • Name
  • Description
  • Aliases
  • Hidden
  • Parent
  • TreatUnmatchedTokensAsErrors
  • NameCasingConvention (inherited by child options, child arguments and subcommands)
  • NamePrefixConvention (inherited by child options and subcommands)
  • ShortFormPrefixConvention (inherited by child options and subcommands)
  • ShortFormAutoGenerate (inherited by child options and subcommands)

Options

An option is a named parameter that can be passed to a command. POSIX CLIs typically prefix the option name with two hyphens (--). The following example shows two options:

dotnet tool update dotnet-suggest --verbosity quiet --global
                                  ^---------^       ^------^

As this example illustrates, the value of the option may be explicit (quiet for --verbosity) or implicit (nothing follows --global). Options that have no value specified are typically Boolean parameters that default to true if the option is specified on the command line.

For some Windows command-line apps, you identify an option by using a leading slash (/) with the option name. For example:

msbuild /version
        ^------^

Both POSIX and Windows prefix conventions are supported. When manually setting a name (overriding decorated property's name), you should specify the option name including the prefix (e.g. --option, -option or /option)


The properties for CliOption attribute (see CliOptionAttribute docs for more info):

  • Name
  • Description
  • Aliases
  • HelpName
  • Hidden
  • Required
  • Recursive
  • Arity
  • AllowedValues
  • AllowMultipleArgumentsPerToken
  • ValidationRules
  • ValidationPattern
  • ValidationMessage

Arguments

An argument is a value passed to an option or a command. The following examples show an argument for the verbosity option and an argument for the build command.

dotnet tool update dotnet-suggest --verbosity quiet --global
                                              ^---^
dotnet build myapp.csproj
             ^----------^

Arguments can have default values that apply if no argument is explicitly provided. For example, many options are implicitly Boolean parameters with a default of true when the option name is in the command line. The following command-line examples are equivalent:

dotnet tool update dotnet-suggest --global
                                  ^------^

dotnet tool update dotnet-suggest --global true
                                  ^-----------^

Some options have required arguments. For example in the .NET CLI, --output requires a folder name argument. If the argument is not provided, the command fails.

Arguments can have expected types, and System.CommandLine displays an error message if an argument can't be parsed into the expected type. For example, the following command errors because "silent" isn't one of the valid values for --verbosity:

dotnet build --verbosity silent
Cannot parse argument 'silent' for option '-v' as expected type 'Microsoft.DotNet.Cli.VerbosityOptions'. Did you mean one of the following?
Detailed
Diagnostic
Minimal
Normal
Quiet

The properties for CliArgument attribute (see CliArgumentAttribute docs for more info):

  • Name
  • Description
  • HelpName
  • Hidden
  • Required
  • Arity
  • AllowedValues
  • ValidationRules
  • ValidationPattern
  • ValidationMessage

Model binding

When the command handler is run, the properties for CLI options and arguments will be already populated and bound from values passed in the command-line. If no matching value is passed, the property will have its default value if it has one or an error will be displayed if it's a required option/argument and it was not specified on the command-line.

An option/argument will be considered required when

  • There is no property initializer and the property type is a reference type (e.g. public string Arg { get; set; }). string is a reference type which has a null as the default value but bool and enum are value types which already have non-null default values. Nullable<T> is a reference type, e.g. bool?.
  • There is a property initializer, but it's initialized with null or null! (SuppressNullableWarningExpression) (e.g. public string Arg { get; set; } = null!;).
  • If it's forced via attribute property Required (e.g. [CliArgument(Required = true)]).
  • If it's forced via required modifier (e.g. public required string Opt { get; set; }). Note that for being able to use required modifier, if your target framework is below net7.0, you also need <LangVersion>11.0</LangVersion> tag (minimum) in your .csproj file (our source generator supplies the polyfills automatically as long as you set C# language version to 11).

An option/argument will be considered optional when

  • There is no property initializer (e.g. public bool Opt { get; set; }) but the property type is a value type which already have non-null default value.
  • There is a property initializer, and it's not initialized with null or null! (SuppressNullableWarningExpression) (e.g. public string Arg { get; set; } = "Default";).
  • If it's forced via attribute property Required (e.g. [CliArgument(Required = false)]).

When you run,

TestApp.exe NewValueForArgument1

or (note the double hyphen/dash which allows dotnet run to pass arguments to our actual application):

dotnet run -- NewValueForArgument1

You see this result:

Handler for 'TestApp.Commands.RootCliCommand' is run:
Value for Option1 property is 'DefaultForOption1'
Value for Argument1 property is 'NewValueForArgument1'

Supported types

Note that you can have a specific type (other than string) for a property which a CliOption or CliArgument attribute is applied to, for example these properties will be parsed and bound/populated automatically:

[CliCommand]
public class WriteFileCommand
{
    [CliArgument]
    public FileInfo OutputFile { get; set; }

    [CliOption]
    public List<string> Lines { get; set; }
}

The following types for properties are supported:

  • Booleans (flags) - If true or false is passed for an option having a bool argument, it is parsed and bound as expected. But an option whose argument type is bool doesn't require an argument to be specified. The presence of the option token on the command line, with no argument following it, results in a value of true.

  • Enums - The values are bound by name, and the binding is case insensitive

  • Common CLR types:

    • FileSystemInfo, FileInfo, DirectoryInfo
    • int, long, short, uint, ulong, ushort
    • double, float, decimal
    • byte, sbyte
    • DateTime, DateTimeOffset, TimeSpan, DateOnly, TimeOnly
    • Guid
    • Uri, IPAddress, IPEndPoint
  • Any type with a public constructor or a static Parse method with a string parameter (other parameters, if any, should be optional) - These types can be bound/parsed automatically even if they are wrapped with Enumerable or Nullable type.

    [CliCommand]
    public class ArgumentConverterCliCommand
    {
        [CliOption]
        public ClassWithConstructor Opt { get; set; }
    
        [CliOption(AllowMultipleArgumentsPerToken = true)]
        public ClassWithConstructor[] OptArray { get; set; }
    
        [CliOption]
        public CustomStruct? OptNullable { get; set; }
    
        [CliOption]
        public IEnumerable<ClassWithConstructor> OptEnumerable { get; set; }
    
        [CliOption]
        public List<ClassWithConstructor> OptList { get; set; }
    
        [CliOption]
        public CustomList<ClassWithConstructor> OptCustomList { get; set; }
    
        [CliArgument]
        public IEnumerable<ClassWithParser> Arg { get; set; }
    }
    
    public class ClassWithConstructor
    {
        private readonly string value;
    
        public ClassWithConstructor(string value)
        {
            this.value = value;
        }
    
        public override string ToString()
        {
            return value;
        }
    }
    
    public class ClassWithParser
    {
        private string value;
    
        public override string ToString()
        {
            return value;
        }
    
        public static ClassWithParser Parse(string value)
        {
            var instance = new ClassWithParser();
            instance.value = value;
            return instance;
        }
    }
    
    public struct CustomStruct
    {
        private readonly string value;
    
        public CustomStruct(string value)
        {
            this.value = value;
        }
    
        public override string ToString()
        {
            return value;
        }
    }
    
  • Arrays, lists, collections:

    • Any type that implements IEnumerable<T> and has a public constructor with a IEnumerable<T> or IList<T> parameter (other parameters, if any, should be optional). CLR collection types already satisfy this condition.

    • If type is generic IEnumerable<T>, IList<T>, ICollection<T> interfaces itself, array T[] will be used to create an instance.

    • If type is non-generic IEnumerable, IList, ICollection interfaces itself, array string[] will be used to create an instance.

    [CliCommand]
    public class EnumerableCliCommand
    {
        [CliOption]
        public IEnumerable<int> OptEnumerable { get; set; }
    
        [CliOption]
        public List<string> OptList { get; set; }
    
        [CliOption(AllowMultipleArgumentsPerToken = true)]
        public FileAccess[] OptEnumArray { get; set; }
    
        [CliOption]
        public Collection<string> OptCollection { get; set; }
    
        [CliOption]
        public HashSet<string> OptHashSet { get; set; }
    
        [CliOption]
        public Queue<FileInfo> OptQueue { get; set; }
    
        [CliOption]
        public CustomList<string> OptCustomList { get; set; }
    
        [CliArgument]
        public IList ArgIList { get; set; }
    }
    
    public class CustomList<T> : List<T>
    {
        public CustomList(IEnumerable<T> items)
            : base(items)
        {
    
        }
    }
    

Validation

In [CliOption] and [CliArgument] attributes; ValidationRules property allows setting predefined validation rules such as

  • CliValidationRules.ExistingFile
  • CliValidationRules.NonExistingFile
  • CliValidationRules.ExistingDirectory
  • CliValidationRules.NonExistingDirectory
  • CliValidationRules.ExistingFileOrDirectory
  • CliValidationRules.NonExistingFileOrDirectory
  • CliValidationRules.LegalPath
  • CliValidationRules.LegalFileName
  • CliValidationRules.LegalUri
  • CliValidationRules.LegalUrl

Validation rules can be combined via using bitwise 'or' operator(| in C#).

ValidationPattern property allows setting a regular expression pattern for custom validation, and ValidationMessage property allows setting a custom error message to show when ValidationPattern does not match.

[CliCommand]
public class ValidationCliCommand
{
    [CliOption(Required = false, ValidationRules = CliValidationRules.ExistingFile)]
    public FileInfo OptFile1 { get; set; }

    [CliOption(Required = false, ValidationRules = CliValidationRules.NonExistingFile | CliValidationRules.LegalPath)]
    public string OptFile2 { get; set; }

    [CliOption(Required = false, ValidationPattern = @"(?i)^[a-z]+$")]
    public string OptPattern1 { get; set; }

    [CliOption(Required = false, ValidationPattern = @"(?i)^[a-z]+$", ValidationMessage = "Custom error message")]
    public string OptPattern2 { get; set; }

    [CliOption(Required = false, ValidationRules = CliValidationRules.LegalUrl)]
    public string OptUrl { get; set; }

    [CliOption(Required = false, ValidationRules = CliValidationRules.LegalUri)]
    public string OptUri { get; set; }

    [CliArgument(Required = false, ValidationRules = CliValidationRules.LegalFileName)]
    public string OptFileName { get; set; }

    public void Run(CliContext context)
    {
        context.ShowValues();
    }
}

Dependency Injection

Commands can have injected dependencies, this is supported via Microsoft.Extensions.DependencyInjection package (version >= 2.1.1). In your project directory, via dotnet cli:

dotnet add package Microsoft.Extensions.DependencyInjection

or in Visual Studio Package Manager Console:

PM> Install-Package Microsoft.Extensions.DependencyInjection

When the source generator detects that your project has reference to Microsoft.Extensions.DependencyInjection, it will generate extension methods for supporting dependency injection. For example, you can now add your services with the extension method Cli.Ext.ConfigureServices:

using DotMake.CommandLine;
using Microsoft.Extensions.DependencyInjection;

Cli.Ext.ConfigureServices(services =>
{
    services.AddTransient<TransientClass>();
    services.AddScoped<ScopedClass>();
    services.AddSingleton<SingletonClass>();
});

Cli.Run<RootCliCommand>();

Then let them be injected to your command class automatically by providing a constructor with the required services:

[CliCommand(Description = "A root cli command with dependency injection")]
public class RootCliCommand
{
    private readonly TransientClass transientDisposable;
    private readonly ScopedClass scopedDisposable;
    private readonly SingletonClass singletonDisposable;

    public RootCliCommand(
        TransientClass transientDisposable,
        ScopedClass scopedDisposable,
        SingletonClass singletonDisposable
    )
    {
        this.transientDisposable = transientDisposable;
        this.scopedDisposable = scopedDisposable;
        this.singletonDisposable = singletonDisposable;
    }

    [CliOption(Description = "Description for Option1")]
    public string Option1 { get; set; } = "DefaultForOption1";

    [CliArgument(Description = "Description for Argument1")]
    public string Argument1 { get; set; }

    public void Run()
    {
        Console.WriteLine($@"Handler for '{GetType().FullName}' is run:");
        Console.WriteLine($@"Value for {nameof(Option1)} property is '{Option1}'");
        Console.WriteLine($@"Value for {nameof(Argument1)} property is '{Argument1}'");
        Console.WriteLine();

        Console.WriteLine($"Instance for {transientDisposable.Name} is available");
        Console.WriteLine($"Instance for {scopedDisposable.Name} is available");
        Console.WriteLine($"Instance for {singletonDisposable.Name} is available");
        Console.WriteLine();
    }
}

public sealed class TransientClass : IDisposable
{
    public string Name => nameof(TransientClass);

    public void Dispose() => Console.WriteLine($"{nameof(TransientClass)}.Dispose()");
}

public sealed class ScopedClass : IDisposable
{
    public string Name => nameof(ScopedClass);

    public void Dispose() => Console.WriteLine($"{nameof(ScopedClass)}.Dispose()");
}

public sealed class SingletonClass : IDisposable
{
    public string Name => nameof(SingletonClass);

    public void Dispose() => Console.WriteLine($"{nameof(SingletonClass)}.Dispose()");
}

Other dependency injection containers (e.g. Autofac) are also supported via Microsoft.Extensions.DependencyInjection.Abstractions package (version >= 2.1.1). In your project directory, via dotnet cli:

dotnet add package Microsoft.Extensions.DependencyInjection.Abstractions

or in Visual Studio Package Manager Console:

PM> Install-Package Microsoft.Extensions.DependencyInjection.Abstractions

When the source generator detects that your project has reference to Microsoft.Extensions.DependencyInjection.Abstractions, it will generate extension methods for supporting custom service providers. For example, you can now set your custom service provider with the extension method Cli.Ext.SetServiceProvider:

using DotMake.CommandLine;
using Autofac.Core;
using Autofac.Core.Registration;

var cb = new ContainerBuilder();
cb.RegisterType<object>();
var container = cb.Build();

Cli.Ext.SetServiceProvider(container);

Cli.Run<RootCliCommand>();

Help output

When you run the app via

  • TestApp.exe -? in project output path (e.g. in TestApp\bin\Debug\net7.0)

  • or dotnet run -- -? in project directory (e.g. in TestApp) (note the double hyphen/dash which allows dotnet run to pass arguments to our actual application)

  • You see this usage help:

DotMake Command-Line TestApp v1.6.0
Copyright © 2023-2024 DotMake

A root cli command

Usage:
  TestApp <argument-1> [options]

Arguments:
  <argument-1>  Description for Argument1 [required]

Options:
  -o, --option-1 <option-1>  Description for Option1 [default: DefaultForOption1]
  -v, --version              Show version information
  -?, -h, --help             Show help and usage information
  • First line comes from AssemblyProductAttribute or AssemblyName (<Product> tag in your .csproj file).
    Version comes from AssemblyInformationalVersionAttribute or AssemblyFileVersionAttribute or AssemblyVersionAttribute (<InformationalVersion> or <FileVersion > or <Version> tag in your .csproj file).
  • Second line comes from AssemblyCopyrightAttribute (<Copyright> tag in your .csproj file).
  • Third line comes from Description property of [CliCommand] or for root commands, AssemblyDescriptionAttribute (<Description> tag in your .csproj file).

Note, how command/option/argument names, descriptions and default values are automatically populated.

By default, command/option/argument names are generated as follows;

  • First the following suffixes are stripped out from class and property names:

    • For commands: "RootCliCommand", "RootCommand", "SubCliCommand", "SubCommand", "CliCommand", "Command", "Cli"
    • For options: "RootCommandOption", "SubCliCommandOption", "SubCommandOption", "CliCommandOption", "CommandOption", "CliOption", "Option"
    • For arguments: "RootCliCommandArgument", "RootCommandArgument", "SubCliCommandArgument", "SubCommandArgument", "CliCommandArgument", "CommandArgument", "CliArgument", "Argument"
  • Then the names are converted to kebab-case, this can be changed by setting NameCasingConvention property of the CliCommand attribute to one of the following values:

    • CliNameCasingConvention.None
    • CliNameCasingConvention.LowerCase
    • CliNameCasingConvention.UpperCase
    • CliNameCasingConvention.TitleCase
    • CliNameCasingConvention.PascalCase
    • CliNameCasingConvention.CamelCase
    • CliNameCasingConvention.KebabCase
    • CliNameCasingConvention.SnakeCase
  • For options, double hyphen/dash prefix is added to the name (e.g. --option), this can be changed by setting NamePrefixConvention (default: DoubleHyphen) property of the CliCommand attribute to one of the following values:

    • CliNamePrefixConvention.SingleHyphen
    • CliNamePrefixConvention.DoubleHyphen
    • CliNamePrefixConvention.ForwardSlash
  • For options, short-form alias with first letter (e.g. -o) is automatically added. This can be changed by setting ShortFormAutoGenerate (default: true) and ShortFormPrefixConvention (default: SingleHyphen) properties of the CliCommand attribute.


For example, change the name casing and prefix convention:

using System;
using DotMake.CommandLine;
 
[CliCommand(
    Description = "A cli command with snake_case name casing and forward slash prefix conventions",
    NameCasingConvention = CliNameCasingConvention.SnakeCase,
    NamePrefixConvention = CliNamePrefixConvention.ForwardSlash,
    ShortFormPrefixConvention = CliNamePrefixConvention.ForwardSlash
)]
public class RootSnakeSlashCliCommand
{
    [CliOption(Description = "Description for Option1")]
    public string Option1 { get; set; } = "DefaultForOption1";
 
    [CliArgument(Description = "Description for Argument1")]
    public string Argument1 { get; set; }
 
    public void Run()
    {
        Console.WriteLine($@"Handler for '{GetType().FullName}' is run:");
        Console.WriteLine($@"Value for {nameof(Option1)} property is '{Option1}'");
        Console.WriteLine($@"Value for {nameof(Argument1)} property is '{Argument1}'");
        Console.WriteLine();
    }
}

When you run the app via TestApp.exe -? or dotnet run -- -?, you see this usage help:

DotMake Command-Line TestApp v1.6.0
Copyright © 2023-2024 DotMake

A cli command with snake_case name casing and forward slash prefix conventions

Usage:
  TestApp <argument_1> [options]

Arguments:
  <argument_1>  Description for Argument1 [required]

Options:
  /o, /option_1 <option_1>  Description for Option1 [default: DefaultForOption1]
  /v, /version              Show version information
  -?, -h, /help             Show help and usage information

Note how even the default options version and help use the new prefix convention ForwardSlash. By the way, as help is a special option, which allows user to discover your app, we still add short-form aliases with other prefix to prevent confusion.

Themes

Cli app theme can be changed via setting CliSettings.Theme property to predefined themes Red, DarkRed, Green, DarkGreen, Blue, DarkBlue or a custom CliTheme. These color and formatting option are mainly used by the help output.

Cli.Run<RootCliCommand>(args, new CliSettings { Theme = CliTheme.Red });

Cli.Run<RootCliCommand>(args, new CliSettings { Theme = CliTheme.DarkRed });

Cli.Run<RootCliCommand>(args, new CliSettings { Theme = CliTheme.Green });

Cli.Run<RootCliCommand>(args, new CliSettings { Theme = CliTheme.DarkGreen });

Cli.Run<RootCliCommand>(args, new CliSettings { Theme = CliTheme.Blue });

Cli.Run<RootCliCommand>(args, new CliSettings { Theme = CliTheme.DarkBlue });

Cli.Run<RootCliCommand>(args, new CliSettings
{
    Theme = new CliTheme(CliTheme.Default)
    {
        HeadingCasing = CliNameCasingConvention.UpperCase,
        HeadingNoColon = true
    }
});

Localization

Localizing commands, options and arguments is supported. You can specify a nameof operator expression with a resource property (generated by resx) in the attribute's argument (for string types only) and the source generator will smartly use the resource property accessor as the value of the argument so that it can localize at runtime. If the property in the nameof operator expression does not point to a resource property, then the name of that property will be used as usual. The reason we use nameof operator is that attributes in .NET only accept compile-time constants and you get CS0182 error if not, so specifying resource property directly is not possible as it's not a compile-time constant but it's a static property access.

[CliCommand(Description = nameof(TestResources.CommandDescription))]
internal class LocalizedCliCommand
{
    [CliOption(Description = nameof(TestResources.OptionDescription))]
    public string Option1 { get; set; } = "DefaultForOption1";

    [CliArgument(Description = nameof(TestResources.ArgumentDescription))]
    public string Argument1 { get; set; }

    public void Run()
    {
        Console.WriteLine($@"Handler for '{GetType().FullName}' is run:");
        Console.WriteLine($@"Value for {nameof(Option1)} property is '{Option1}'");
        Console.WriteLine($@"Value for {nameof(Argument1)} property is '{Argument1}'");
        Console.WriteLine();
    }
}

Triggering help

If a command represents a group and not an action, you may want to show help. If Run or RunAsync method is missing in a command class, then by default it will show help. You can also manually trigger help in Run or RunAsync method of a command class via calling CliContext.ShowHelp. For testing a command, other methods CliContext.ShowValues and CliContext.IsEmptyCommand are also useful. ShowValues shows parsed values for current command and its arguments and options.

See below example; root command does not have a handler method so it will always show help and sub-command will show help if command is specified without any arguments or option, and it will show (dump) values if not:

[CliCommand(Description = "A root cli command")]
public class HelpCliCommand
{
  [CliOption(Description = "Description for Option1")]
  public string Option1 { get; set; } = "DefaultForOption1";

  [CliArgument(Description = "Description for Argument1")]
  public string Argument1 { get; set; } = "DefaultForArgument1";

  [CliCommand(Description = "A sub cli command")]
  public class SubCliCommand
  {
      [CliArgument(Description = "Description for Argument2")]
      public string Argument2 { get; set; } = "DefaultForArgument2";

      public void Run(CliContext context)
      {
          if (context.IsEmptyCommand())
              context.ShowHelp();
          else
              context.ShowValues();
      }
  }
}

Additional documentation

Product Compatible and additional computed target framework versions.
.NET net5.0 was computed.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 is compatible.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed. 
.NET Core netcoreapp2.0 was computed.  netcoreapp2.1 was computed.  netcoreapp2.2 was computed.  netcoreapp3.0 was computed.  netcoreapp3.1 was computed. 
.NET Standard netstandard2.0 is compatible.  netstandard2.1 was computed. 
.NET Framework net461 was computed.  net462 was computed.  net463 was computed.  net47 was computed.  net471 was computed.  net472 was computed.  net48 was computed.  net481 was computed. 
MonoAndroid monoandroid was computed. 
MonoMac monomac was computed. 
MonoTouch monotouch was computed. 
Tizen tizen40 was computed.  tizen60 was computed. 
Xamarin.iOS xamarinios was computed. 
Xamarin.Mac xamarinmac was computed. 
Xamarin.TVOS xamarintvos was computed. 
Xamarin.WatchOS xamarinwatchos was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.
  • .NETStandard 2.0

  • net7.0

    • No dependencies.

NuGet packages

This package is not used by any NuGet packages.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
1.8.7 311 4/2/2024
1.8.6 401 3/6/2024
1.8.5 171 3/2/2024
1.8.4 187 2/29/2024
1.8.3 112 2/27/2024
1.8.2 114 2/26/2024
1.8.1 209 2/21/2024
1.8.0 224 2/13/2024
1.7.2 297 1/29/2024
1.7.0 179 1/25/2024
1.6.9 64 1/19/2024
1.6.8 263 1/16/2024
1.6.6 70 1/14/2024
1.6.4 68 1/10/2024
1.6.3 64 1/10/2024
1.6.2 95 1/9/2024
1.6.0 74 1/6/2024
1.5.9 71 1/4/2024
1.5.8 73 1/3/2024
1.5.7 76 1/1/2024
1.5.6 68 12/29/2023
1.5.5 58 12/27/2023
1.5.4 74 12/25/2023
1.5.2 53 12/23/2023
1.5.0 60 12/22/2023
1.4.0 68 12/19/2023
1.2.1 73 12/15/2023
1.2.0 69 12/15/2023
1.0.0 66 12/12/2023

- Updated to latest daily build 2.0.0-beta4.24201.1 of System.CommandLine.
     - Added support for command handlers or command as delegates without the async keyword (which returns Task or Task<int>).