InfluxDB.Client.Linq 4.18.0

There is a newer prerelease version of this package available.
See the version list below for details.
dotnet add package InfluxDB.Client.Linq --version 4.18.0                
NuGet\Install-Package InfluxDB.Client.Linq -Version 4.18.0                
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="InfluxDB.Client.Linq" Version="4.18.0" />                
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add InfluxDB.Client.Linq --version 4.18.0                
#r "nuget: InfluxDB.Client.Linq, 4.18.0"                
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install InfluxDB.Client.Linq as a Cake Addin
#addin nuget:?package=InfluxDB.Client.Linq&version=4.18.0

// Install InfluxDB.Client.Linq as a Cake Tool
#tool nuget:?package=InfluxDB.Client.Linq&version=4.18.0                

InfluxDB.Client.Linq

The library supports to use a LINQ expression to query the InfluxDB.

Documentation

This section contains links to the client library documentation.

Usage

How to start

First, add the library as a dependency for your project:

# For actual version please check: https://www.nuget.org/packages/InfluxDB.Client.Linq/

dotnet add package InfluxDB.Client.Linq --version 1.17.0-dev.linq.17

Next, you should add additional using statement to your program:

using InfluxDB.Client.Linq;

The LINQ query depends on QueryApiSync, you could create an instance of QueryApiSync by:

var client = new InfluxDBClient("http://localhost:8086", "my-token");
var queryApi = client.GetQueryApiSync();

In the following examples we assume that the Sensor entity is defined as:

class Sensor
{
    [Column("sensor_id", IsTag = true)] 
    public string SensorId { get; set; }

    /// <summary>
    /// "production" or "testing"
    /// </summary>
    [Column("deployment", IsTag = true)]
    public string Deployment { get; set; }

    /// <summary>
    /// Value measured by sensor
    /// </summary>
    [Column("data")]
    public float Value { get; set; }

    [Column(IsTimestamp = true)] 
    public DateTime Timestamp { get; set; }
}

Time Series

The InfluxDB uses concept of TimeSeries - a collection of data that shares a measurement, tag set, and bucket. You always operate on each time-series, if you querying data with Flux.

Imagine that you have following data:

sensor,deployment=production,sensor_id=id-1 data=15
sensor,deployment=testing,sensor_id=id-1 data=28
sensor,deployment=testing,sensor_id=id-1 data=12
sensor,deployment=production,sensor_id=id-1 data=89

The corresponding time series are:

  • sensor,deployment=production,sensor_id=id-1
  • sensor,deployment=testing,sensor_id=id-1

If you query your data with following Flux:

from(bucket: "my-bucket")
  |> range(start: 0)
  |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
  |> drop(columns: ["_start", "_stop", "_measurement"])
  |> limit(n:1)

The result will be one item for each time-series:

sensor,deployment=production,sensor_id=id-1 data=15
sensor,deployment=testing,sensor_id=id-1 data=28

and this is also way how this LINQ driver works.

The driver supposes that you are querying over one time-series.

There is a way how to change this configuration:

Enable querying multiple time-series

var settings = new QueryableOptimizerSettings{QueryMultipleTimeSeries = true};
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", _queryApi, settings)
    select s;

The group() function is way how to query multiple time-series and gets correct results.

The following query works correctly:

from(bucket: "my-bucket")
  |> range(start: 0)
  |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
  |> drop(columns: ["_start", "_stop", "_measurement"])
  |> group()
  |> limit(n:1)

and corresponding result:

sensor,deployment=production,sensor_id=id-1 data=15

Do not used this functionality if it is not required because it brings a performance costs caused by sorting:

Group does not guarantee sort order

The group() does not guarantee sort order of output records. To ensure data is sorted correctly, use orderby expression.

Client Side Evaluation

The library attempts to evaluate a query on the server as much as possible. The client side evaluations is required for aggregation function if there is more then one time series.

If you want to count your data with following Flux:

from(bucket: "my-bucket")
  |> range(start: 0)
  |> drop(columns: ["_start", "_stop", "_measurement"])
  |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
  |> stateCount(fn: (r) => true, column: "linq_result_column") 
  |> last(column: "linq_result_column") 
  |> keep(columns: ["linq_result_column"])

The result will be one count for each time-series:

#group,false,false,false
#datatype,string,long,long
#default,_result,,
,result,table,linq_result_column
,,0,1
,,0,1

and client has to aggregate this multiple results into one scalar value.

Operators that could cause client side evaluation:

  • Count
  • CountLong

TL;DR

Perform Query

The LINQ query requires bucket and organization as a source of data. Both of them could be name or ID.

var query = (from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.SensorId == "id-1"
    where s.Value > 12
    where s.Timestamp > new DateTime(2019, 11, 16, 8, 20, 15, DateTimeKind.Utc)
    where s.Timestamp < new DateTime(2021, 01, 10, 5, 10, 0, DateTimeKind.Utc)
    orderby s.Timestamp
    select s)
    .Take(2)
    .Skip(2);

var sensors = query.ToList();

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 2019-11-16T08:20:15Z, stop: 2021-01-10T05:10:00Z) 
    |> filter(fn: (r) => (r["sensor_id"] == "id-1")) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => (r["data"] > 12)) 
    |> limit(n: 2, offset: 2)

Filtering

The range() and filter() are pushdown functions that allow push their data manipulation down to the underlying data source rather than storing and manipulating data in memory. Using pushdown functions at the beginning of query we greatly reduce the amount of server memory necessary to run a query.

The LINQ provider needs to aligns fields within each input table that have the same timestamp to column-wise format:

From
_time _value _measurement _field
1970-01-01T00:00:00.000000001Z 1.0 "m1" "f1"
1970-01-01T00:00:00.000000001Z 2.0 "m1" "f2"
1970-01-01T00:00:00.000000002Z 3.0 "m1" "f1"
1970-01-01T00:00:00.000000002Z 4.0 "m1" "f2"
To
_time _measurement f1 f2
1970-01-01T00:00:00.000000001Z "m1" 1.0 2.0
1970-01-01T00:00:00.000000002Z "m1" 3.0 4.0

For that reason we need to use the pivot() function. The pivot is heavy and should be used at the end of our Flux query.

There is an also possibility to disable appending pivot by:

var optimizerSettings =
    new QueryableOptimizerSettings
    {
        AlignFieldsWithPivot = false
    };
    
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi, optimizerSettings)
    select s;

Mapping LINQ filters

For the best performance on the both side - server, LINQ provider we maps the LINQ expressions to FLUX query following way:

Filter by Timestamp

Mapped to range().

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Timestamp >= new DateTime(2019, 11, 16, 8, 20, 15, DateTimeKind.Utc)
    select s;

var sensors = query.ToList();

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 2019-11-16T08:20:15ZZ) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])
Filter by Tag

Mapped to filter() before pivot().

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.SensorId == "id-1"
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0)
    |> filter(fn: (r) => (r["sensor_id"] == "id-1"))  
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])
Filter by Field

The filter by field has to be after the pivot() because we want to select all fields from pivoted table.

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Value < 28
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0)
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")  
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => (r["data"] < 28))

If we move the filter() for fields before the pivot() then we will gets wrong results:

Data
m1 f1=1,f2=2 1
m1 f1=3,f2=4 2
Without filter
from(bucket: "my-bucket") 
    |> range(start: 0)
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])

Results:

_time f1 f2
1970-01-01T00:00:00.000000001Z 1.0 2.0
1970-01-01T00:00:00.000000002Z 3.0 4.0
Filter before pivot()

filter: f1 > 0

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> filter(fn: (r) => (r["_field"] == "f1" and r["_value"] > 0))
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])

Results:

_time f1
1970-01-01T00:00:00.000000001Z 1.0
1970-01-01T00:00:00.000000002Z 3.0

Time Range Filtering

The time filtering expressions are mapped to Flux range() function. This function has start and stop parameters with following behaviour: start <= _time < stop:

Results include records with _time values greater than or equal to the specified start time and less than the specified stop time.

This means that we have to add one nanosecond to start if we want timestamp greater than and also add one nanosecond to stop if we want to timestamp lesser or equal than.

Example 1:
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Timestamp > new DateTime(2019, 11, 16, 8, 20, 15, DateTimeKind.Utc)
    where s.Timestamp < new DateTime(2021, 01, 10, 5, 10, 0, DateTimeKind.Utc)
    select s;

var sensors = query.ToList();

Flux Query:

start_shifted = int(v: time(v: "2019-11-16T08:20:15Z")) + 1

from(bucket: "my-bucket") 
    |> range(start: time(v: start_shifted), stop: 2021-01-10T05:10:00Z)
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
Example 2:
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Timestamp >= new DateTime(2019, 11, 16, 8, 20, 15, DateTimeKind.Utc)
    where s.Timestamp <= new DateTime(2021, 01, 10, 5, 10, 0, DateTimeKind.Utc)
    select s;

var sensors = query.ToList();

Flux Query:

stop_shifted = int(v: time(v: "2021-01-10T05:10:00Z")) + 1

from(bucket: "my-bucket") 
    |> range(start: 2019-11-16T08:20:15Z, stop: time(v: stop_shifted)) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])
Example 3:
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Timestamp >= new DateTime(2019, 11, 16, 8, 20, 15, DateTimeKind.Utc)
    select s;

var sensors = query.ToList();

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 2019-11-16T08:20:15ZZ) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])
Example 4:
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Timestamp <= new DateTime(2021, 01, 10, 5, 10, 0, DateTimeKind.Utc)
    select s;

var sensors = query.ToList();

Flux Query:

stop_shifted = int(v: time(v: "2021-01-10T05:10:00Z")) + 1

from(bucket: "my-bucket") 
    |> range(start: 0, stop: time(v: stop_shifted))
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
Example 5:
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Timestamp == new DateTime(2019, 11, 16, 8, 20, 15, DateTimeKind.Utc)
    select s;

var sensors = query.ToList();

Flux Query:

stop_shifted = int(v: time(v: "2019-11-16T08:20:15Z")) + 1

from(bucket: "my-bucket") 
    |> range(start: 2019-11-16T08:20:15Z, stop: time(v: stop_shifted)) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])

There is also a possibility to specify the default value for start and stop parameter. This is useful when you need to include data with future timestamps when no time bounds are explicitly set.

var settings = new QueryableOptimizerSettings
{
    RangeStartValue = DateTime.UtcNow.AddHours(-24),
    RangeStopValue = DateTime.UtcNow.AddHours(1)
};
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi, settings)
    select s;

TD;LR

Supported LINQ operators

Equal

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.SensorId == "id-1"
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0)
    |> filter(fn: (r) => (r["sensor_id"] == "id-1"))  
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])

Not Equal

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.SensorId != "id-1"
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0)
    |> filter(fn: (r) => (r["sensor_id"] != "id-1")) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])

Less Than

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Value < 28
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => (r["data"] < 28))

Less Than Or Equal

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Value <= 28
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => (r["data"] <= 28))

Greater Than

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Value > 28
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => (r["data"] > 28))

Greater Than Or Equal

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Value >= 28
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => (r["data"] >= 28))

And

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Value >= 28 && s.SensorId != "id-1"
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> filter(fn: (r) => (r["sensor_id"] != "id-1"))
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => (r["data"] >= 28))

Or

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Value >= 28 || s.Value <= 5
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => ((r["data"] >= 28) or (r["data"] <=> 28)))

Any

The following code demonstrates how to use the Any operator to determine whether a collection contains any elements. By default the InfluxDB.Client doesn't supports to store a subcollection in your DomainObject.

Imagine that you have following entities:

class SensorCustom
{
    public Guid Id { get; set; }
    
    public float Data { get; set; }
    
    public DateTimeOffset Time { get; set; }
    
    public virtual ICollection<SensorAttribute> Attributes { get; set; }
}

class SensorAttribute
{
    public string Name { get; set; }
    public string Value { get; set; }
}

To be able to store SensorCustom entity in InfluxDB and retrieve it from database you should implement IDomainObjectMapper. The converter tells to the Client how to map DomainObject into PointData and how to map FluxRecord to DomainObject.

Entity Converter:

private class SensorEntityConverter : IDomainObjectMapper
{
    //
    // Parse incoming FluxRecord to DomainObject
    //
    public T ConvertToEntity<T>(FluxRecord fluxRecord)
    {
        if (typeof(T) != typeof(SensorCustom))
        {
            throw new NotSupportedException($"This converter doesn't supports: {typeof(SensorCustom)}");
        }

        //
        // Create SensorCustom entity and parse `SeriesId`, `Value` and `Time`
        //
        var customEntity = new SensorCustom
        {
            Id = Guid.Parse(Convert.ToString(fluxRecord.GetValueByKey("series_id"))!),
            Data = Convert.ToDouble(fluxRecord.GetValueByKey("data")),
            Time = fluxRecord.GetTime().GetValueOrDefault().ToDateTimeUtc(),
            Attributes = new List<SensorAttribute>()
        };
        
        foreach (var (key, value) in fluxRecord.Values)
        {
            //
            // Parse SubCollection values
            //
            if (key.StartsWith("property_"))
            {
                var attribute = new SensorAttribute
                {
                    Name = key.Replace("property_", string.Empty), Value = Convert.ToString(value)
                };
                
                customEntity.Attributes.Add(attribute);
            }
        }

        return (T) Convert.ChangeType(customEntity, typeof(T));
    }

    //
    // Convert DomainObject into PointData
    //
    public PointData ConvertToPointData<T>(T entity, WritePrecision precision)
    {
        if (!(entity is SensorCustom ce))
        {
            throw new NotSupportedException($"This converter doesn't supports: {typeof(SensorCustom)}");
        }

        //
        // Map `SeriesId`, `Value` and `Time` to Tag, Field and Timestamp
        //
        var point = PointData
            .Measurement("custom_measurement")
            .Tag("series_id", ce.Id.ToString())
            .Field("data", ce.Data)
            .Timestamp(ce.Time, precision);

        //
        // Map subattributes to Fields
        //
        foreach (var attribute in ce.Attributes ?? new List<SensorAttribute>())
        {
            point = point.Field($"property_{attribute.Name}", attribute.Value);
        }

        return point;
    }
}

The Converter could be passed to QueryApiSync, QueryApi or WriteApi by:

// Create Converter
var converter = new SensorEntityConverter();

// Get Query and Write API
var queryApi = client.GetQueryApiSync(converter);
var writeApi = client.GetWriteApi(converter);

The LINQ provider needs to know how properties of DomainObject are stored in InfluxDB - their name and type (tag, field, timestamp).

If you use a IDomainObjectMapper instead of InfluxDB Attributes you should implement IMemberNameResolver:

private class SensorMemberResolver: IMemberNameResolver
{
    //
    // Tell to LINQ providers how is property of DomainObject mapped - Tag, Field, Timestamp, ... ?
    //
    public MemberType ResolveMemberType(MemberInfo memberInfo)
    {
        //
        // Mapping of subcollection
        //
        if (memberInfo.DeclaringType == typeof(SensorAttribute))
        {
            return memberInfo.Name switch
            {
                "Name" => MemberType.NamedField,
                "Value" => MemberType.NamedFieldValue,
                _ => MemberType.Field
            };
        }

        //
        // Mapping of "root" domain
        //
        return memberInfo.Name switch
        {
            "Time" => MemberType.Timestamp,
            "Id" => MemberType.Tag,
            _ => MemberType.Field
        };
    }

    //
    // Tell to LINQ provider how is property of DomainObject named 
    //
    public string GetColumnName(MemberInfo memberInfo)
    {
        return memberInfo.Name switch
        {
            "Id" => "series_id",
            "Data" => "data",
            _ => memberInfo.Name
        };
    }

    //
    // Tell to LINQ provider how is named property that is flattened
    //
    public string GetNamedFieldName(MemberInfo memberInfo, object value)
    {
        return "attribute_" + Convert.ToString(value);
    }
}

Now We are able to provide a required information to the LINQ provider by memberResolver parameter:

var memberResolver = new SensorMemberResolver();

var query = from s in InfluxDBQueryable<SensorCustom>.Queryable("my-bucket", "my-org", queryApi, memberResolver)
    where s.Attributes.Any(a => a.Name == "quality" && a.Value == "good")
    select s;

Flux Query:

from(bucket: "my-bucket")
    |> range(start: 0)
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => (r["attribute_quality"] == "good"))

For more info see CustomDomainMappingAndLinq example.

Take

var query = (from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    select s)
    .Take(10);

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> limit(n: 10)

Note: the limit() function can be align before pivot() function by:

var optimizerSettings =
    new QueryableOptimizerSettings
    {
        AlignLimitFunctionAfterPivot = false
    };

Performance: The pivot() is a “heavy” function. Using limit() before pivot() is much faster but works only if you have consistent data series. See #318 for more details.

TakeLast

var query = (from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    select s)
    .TakeLast(10);

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> tail(n: 10)

Note: the tail() function can be align before pivot() function by:

var optimizerSettings =
    new QueryableOptimizerSettings
    {
        AlignLimitFunctionAfterPivot = false
    };

Performance: The pivot() is a “heavy” function. Using tail() before pivot() is much faster but works only if you have consistent data series. See #318 for more details.

Skip

var query = (from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    select s)
    .Take(10)
    .Skip(50);

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> limit(n: 10, offset: 50)

OrderBy

Example 1:
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    orderby s.Deployment
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> sort(columns: ["deployment"], desc: false)
Example 2:
var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    orderby s.Timestamp descending 
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> sort(columns: ["_time"], desc: true)

Count

Possibility of partial client side evaluation

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    select s;

var sensors = query.Count();

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> stateCount(fn: (r) => true, column: "linq_result_column") 
    |> last(column: "linq_result_column") 
    |> keep(columns: ["linq_result_column"])

LongCount

Possibility of partial client side evaluation

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    select s;

var sensors = query.LongCount();

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0)
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> stateCount(fn: (r) => true, column: "linq_result_column") 
    |> last(column: "linq_result_column") 
    |> keep(columns: ["linq_result_column"])

Contains

int[] values = {15, 28};

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where values.Contains(s.Value)
    select s;

var sensors = query.Count();

Flux Query:

from(bucket: "my-bucket")
    |> range(start: 0)
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
    |> drop(columns: ["_start", "_stop", "_measurement"])
    |> filter(fn: (r) => contains(value: r["data"], set: [15, 28]))

Custom LINQ operators

AggregateWindow

The AggregateWindow applies an aggregate function to fixed windows of time. Can be used only for a field which is defined as timestamp - [Column(IsTimestamp = true)]. For more info about aggregateWindow() function see Flux's documentation - https://docs.influxdata.com/flux/v0.x/stdlib/universe/aggregatewindow/.

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    where s.Timestamp.AggregateWindow(TimeSpan.FromSeconds(20), TimeSpan.FromSeconds(40), "mean")
    select s;

Flux Query:

from(bucket: "my-bucket") 
    |> range(start: 0) 
    |> aggregateWindow(every: 20s, period: 40s, fn: mean) 
    |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") 
    |> drop(columns: ["_start", "_stop", "_measurement"])

Domain Converter

There is also possibility to use custom domain converter to transform data from/to your DomainObject.

Instead of following Influx attributes:

[Measurement("temperature")]
private class Temperature
{
    [Column("location", IsTag = true)] public string Location { get; set; }

    [Column("value")] public double Value { get; set; }

    [Column(IsTimestamp = true)] public DateTime Time { get; set; }
}

you could create own instance of IDomainObjectMapper and use it with QueryApiSync, QueryApi and WriteApi.

var converter = new DomainEntityConverter();
var queryApi = client.GetQueryApiSync(converter)

To satisfy LINQ Query Provider you have to implement IMemberNameResolver:

var resolver = new MemberNameResolver();

var query = from s in InfluxDBQueryable<SensorCustom>.Queryable("my-bucket", "my-org", queryApi, nameResolver)
    where s.Attributes.Any(a => a.Name == "quality" && a.Value == "good")
    select s;

for more details see Any operator and for full example see: CustomDomainMappingAndLinq.

How to debug output Flux Query

var query = (from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", _queryApi)
        where s.SensorId == "id-1"
        where s.Value > 12
        where s.Timestamp > new DateTime(2019, 11, 16, 8, 20, 15, DateTimeKind.Utc)
        where s.Timestamp < new DateTime(2021, 01, 10, 5, 10, 0, DateTimeKind.Utc)
        orderby s.Timestamp
        select s)
    .Take(2)
    .Skip(2);
    
Console.WriteLine("==== Debug LINQ Queryable Flux output ====");
var influxQuery = ((InfluxDBQueryable<Sensor>) query).ToDebugQuery();
foreach (var statement in influxQuery.Extern.Body)
{
    var os = statement as OptionStatement;
    var va = os?.Assignment as VariableAssignment;
    var name = va?.Id.Name;
    var value = va?.Init.GetType().GetProperty("Value")?.GetValue(va.Init, null);

    Console.WriteLine($"{name}={value}");
}
Console.WriteLine();
Console.WriteLine(influxQuery._Query);

How to filter by Measurement

By default, as an optimization step, Flux queries generated by LINQ will automatically drop the Start, Stop and Measurement columns:

from(bucket: "my-bucket")
  |> range(start: 0)
  |> drop(columns: ["_start", "_stop", "_measurement"])
  ...

This is because typical POCO classes do not include them:

[Measurement("temperature")]
private class Temperature
{
    [Column("location", IsTag = true)] public string Location { get; set; }
    [Column("value")] public double Value { get; set; }
    [Column(IsTimestamp = true)] public DateTime Time { get; set; }
}

It is, however, possible to utilize the Measurement column in LINQ queries by enabling it in the query optimization settings:

var optimizerSettings =
    new QueryableOptimizerSettings
    {
        DropMeasurementColumn = false,
        
        // Note we can also enable the start and stop columns
        //DropStartColumn = false,
        //DropStopColumn = false
    };

var queryable =
    new InfluxDBQueryable<InfluxPoint>("my-bucket", "my-org", queryApi, new DefaultMemberNameResolver(), optimizerSettings);

var latest =
    await queryable.Where(p => p.Measurement == "temperature")
                   .OrderByDescending(p => p.Time)
                   .ToInfluxQueryable()
                   .GetAsyncEnumerator()
                   .FirstOrDefaultAsync();

private class InfluxPoint
{
    [Column(IsMeasurement = true)] public string Measurement { get; set; }
    [Column("location", IsTag = true)] public string Location { get; set; }
    [Column("value")] public double Value { get; set; }
    [Column(IsTimestamp = true)] public DateTime Time { get; set; }
}

Asynchronous Queries

The LINQ driver also supports asynchronous querying. For asynchronous queries you have to initialize InfluxDBQueryable with asynchronous version of QueryApi and transform IQueryable<T> to IAsyncEnumerable<T>:

var client = new InfluxDBClient("http://localhost:8086", "my-token");
var queryApi = client.GetQueryApi();

var query = from s in InfluxDBQueryable<Sensor>.Queryable("my-bucket", "my-org", queryApi)
    select s;

IAsyncEnumerable<Sensor> enumerable = query
    .ToInfluxQueryable()
    .GetAsyncEnumerator();
Product Compatible and additional computed target framework versions.
.NET net5.0 was computed.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed. 
.NET Core netcoreapp2.0 was computed.  netcoreapp2.1 was computed.  netcoreapp2.2 was computed.  netcoreapp3.0 was computed.  netcoreapp3.1 was computed. 
.NET Standard netstandard2.0 is compatible.  netstandard2.1 is compatible. 
.NET Framework net461 was computed.  net462 was computed.  net463 was computed.  net47 was computed.  net471 was computed.  net472 was computed.  net48 was computed.  net481 was computed. 
MonoAndroid monoandroid was computed. 
MonoMac monomac was computed. 
MonoTouch monotouch was computed. 
Tizen tizen40 was computed.  tizen60 was computed. 
Xamarin.iOS xamarinios was computed. 
Xamarin.Mac xamarinmac was computed. 
Xamarin.TVOS xamarintvos was computed. 
Xamarin.WatchOS xamarinwatchos was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (4)

Showing the top 4 NuGet packages that depend on InfluxDB.Client.Linq:

Package Downloads
SpmisNet.Data

Package Description

DeerNet.InfluxDb2

Package Description

MicroHeart.InfluxDB

Package Description

ToolNET.InfluxDB.SDK

时序数据库InfluxDB操作SDK

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
4.19.0-dev.14906 32 10/2/2024
4.19.0-dev.14897 32 10/2/2024
4.19.0-dev.14896 27 10/2/2024
4.19.0-dev.14895 29 10/2/2024
4.19.0-dev.14811 48 9/13/2024
4.18.0 907 9/13/2024
4.18.0-dev.14769 47 9/4/2024
4.18.0-dev.14743 46 9/3/2024
4.18.0-dev.14694 44 9/3/2024
4.18.0-dev.14693 41 9/3/2024
4.18.0-dev.14692 41 9/3/2024
4.18.0-dev.14618 38 9/2/2024
4.18.0-dev.14609 38 9/2/2024
4.18.0-dev.14592 39 9/2/2024
4.18.0-dev.14446 65 8/19/2024
4.18.0-dev.14414 56 8/12/2024
4.17.0 2,278 8/12/2024
4.17.0-dev.headers.read.1 67 7/22/2024
4.17.0-dev.14350 38 8/5/2024
4.17.0-dev.14333 32 8/5/2024
4.17.0-dev.14300 31 8/5/2024
4.17.0-dev.14291 30 8/5/2024
4.17.0-dev.14189 45 7/23/2024
4.17.0-dev.14179 45 7/22/2024
4.17.0-dev.14101 98 7/1/2024
4.17.0-dev.14100 52 7/1/2024
4.17.0-dev.14044 54 6/24/2024
4.16.0 3,934 6/24/2024
4.16.0-dev.13990 57 6/3/2024
4.16.0-dev.13973 47 6/3/2024
4.16.0-dev.13972 47 6/3/2024
4.16.0-dev.13963 55 6/3/2024
4.16.0-dev.13962 49 6/3/2024
4.16.0-dev.13881 52 6/3/2024
4.16.0-dev.13775 65 5/17/2024
4.16.0-dev.13702 57 5/17/2024
4.15.0 1,963 5/17/2024
4.15.0-dev.13674 62 5/14/2024
4.15.0-dev.13567 72 4/2/2024
4.15.0-dev.13558 54 4/2/2024
4.15.0-dev.13525 63 4/2/2024
4.15.0-dev.13524 53 4/2/2024
4.15.0-dev.13433 66 3/7/2024
4.15.0-dev.13432 63 3/7/2024
4.15.0-dev.13407 63 3/7/2024
4.15.0-dev.13390 59 3/7/2024
4.15.0-dev.13388 55 3/7/2024
4.15.0-dev.13282 62 3/6/2024
4.15.0-dev.13257 61 3/6/2024
4.15.0-dev.13113 226 2/1/2024
4.15.0-dev.13104 53 2/1/2024
4.15.0-dev.13081 60 2/1/2024
4.15.0-dev.13040 56 2/1/2024
4.15.0-dev.13039 57 2/1/2024
4.15.0-dev.12863 101 1/8/2024
4.15.0-dev.12846 78 1/8/2024
4.15.0-dev.12837 62 1/8/2024
4.15.0-dev.12726 147 12/1/2023
4.15.0-dev.12725 68 12/1/2023
4.15.0-dev.12724 69 12/1/2023
4.15.0-dev.12691 71 12/1/2023
4.15.0-dev.12658 66 12/1/2023
4.15.0-dev.12649 69 12/1/2023
4.15.0-dev.12624 66 12/1/2023
4.15.0-dev.12471 97 11/7/2023
4.15.0-dev.12462 69 11/7/2023
4.14.0 43,104 11/7/2023
4.14.0-dev.12437 71 11/7/2023
4.14.0-dev.12343 81 11/2/2023
4.14.0-dev.12310 67 11/2/2023
4.14.0-dev.12284 73 11/1/2023
4.14.0-dev.12235 71 11/1/2023
4.14.0-dev.12226 68 11/1/2023
4.14.0-dev.11972 201 8/8/2023
4.14.0-dev.11915 106 7/31/2023
4.14.0-dev.11879 117 7/28/2023
4.13.0 20,946 7/28/2023
4.13.0-dev.11854 89 7/28/2023
4.13.0-dev.11814 101 7/21/2023
4.13.0-dev.11771 92 7/19/2023
4.13.0-dev.11770 98 7/19/2023
4.13.0-dev.11728 88 7/18/2023
4.13.0-dev.11686 87 7/17/2023
4.13.0-dev.11685 85 7/17/2023
4.13.0-dev.11676 101 7/17/2023
4.13.0-dev.11479 87 6/27/2023
4.13.0-dev.11478 87 6/27/2023
4.13.0-dev.11477 81 6/27/2023
4.13.0-dev.11396 95 6/19/2023
4.13.0-dev.11395 80 6/19/2023
4.13.0-dev.11342 88 6/15/2023
4.13.0-dev.11330 98 6/12/2023
4.13.0-dev.11305 91 6/12/2023
4.13.0-dev.11296 92 6/12/2023
4.13.0-dev.11217 94 6/6/2023
4.13.0-dev.11089 87 5/30/2023
4.13.0-dev.11064 94 5/30/2023
4.13.0-dev.10998 89 5/29/2023
4.13.0-dev.10989 94 5/29/2023
4.13.0-dev.10871 93 5/8/2023
4.13.0-dev.10870 78 5/8/2023
4.13.0-dev.10819 106 4/28/2023
4.12.0 12,341 4/28/2023
4.12.0-dev.10777 88 4/27/2023
4.12.0-dev.10768 99 4/27/2023
4.12.0-dev.10759 99 4/27/2023
4.12.0-dev.10742 92 4/27/2023
4.12.0-dev.10685 85 4/27/2023
4.12.0-dev.10684 89 4/27/2023
4.12.0-dev.10643 91 4/27/2023
4.12.0-dev.10642 91 4/27/2023
4.12.0-dev.10569 91 4/27/2023
4.12.0-dev.10193 129 2/23/2023
4.11.0 18,831 2/23/2023
4.11.0-dev.10176 102 2/23/2023
4.11.0-dev.10059 207 1/26/2023
4.10.0 5,742 1/26/2023
4.10.0-dev.10033 120 1/25/2023
4.10.0-dev.10032 122 1/25/2023
4.10.0-dev.10031 119 1/25/2023
4.10.0-dev.9936 2,186 12/26/2022
4.10.0-dev.9935 115 12/26/2022
4.10.0-dev.9881 109 12/21/2022
4.10.0-dev.9880 107 12/21/2022
4.10.0-dev.9818 116 12/16/2022
4.10.0-dev.9773 106 12/12/2022
4.10.0-dev.9756 112 12/12/2022
4.10.0-dev.9693 102 12/6/2022
4.9.0 9,212 12/6/2022
4.9.0-dev.9684 109 12/6/2022
4.9.0-dev.9666 115 12/6/2022
4.9.0-dev.9617 110 12/6/2022
4.9.0-dev.9478 103 12/5/2022
4.9.0-dev.9469 120 12/5/2022
4.9.0-dev.9444 102 12/5/2022
4.9.0-dev.9411 97 12/5/2022
4.9.0-dev.9350 107 12/1/2022
4.8.0 1,586 12/1/2022
4.8.0-dev.9324 102 11/30/2022
4.8.0-dev.9232 113 11/28/2022
4.8.0-dev.9223 108 11/28/2022
4.8.0-dev.9222 111 11/28/2022
4.8.0-dev.9117 122 11/21/2022
4.8.0-dev.9108 107 11/21/2022
4.8.0-dev.9099 113 11/21/2022
4.8.0-dev.9029 109 11/16/2022
4.8.0-dev.8971 113 11/15/2022
4.8.0-dev.8961 119 11/14/2022
4.8.0-dev.8928 117 11/14/2022
4.8.0-dev.8899 121 11/14/2022
4.8.0-dev.8898 115 11/14/2022
4.8.0-dev.8839 126 11/14/2022
4.8.0-dev.8740 105 11/7/2022
4.8.0-dev.8725 110 11/7/2022
4.8.0-dev.8648 109 11/3/2022
4.7.0 23,678 11/3/2022
4.7.0-dev.8625 117 11/2/2022
4.7.0-dev.8594 117 10/31/2022
4.7.0-dev.8579 117 10/31/2022
4.7.0-dev.8557 109 10/31/2022
4.7.0-dev.8540 101 10/31/2022
4.7.0-dev.8518 105 10/31/2022
4.7.0-dev.8517 114 10/31/2022
4.7.0-dev.8509 111 10/31/2022
4.7.0-dev.8377 110 10/26/2022
4.7.0-dev.8360 123 10/25/2022
4.7.0-dev.8350 116 10/24/2022
4.7.0-dev.8335 119 10/24/2022
4.7.0-dev.8334 120 10/24/2022
4.7.0-dev.8223 154 10/19/2022
4.7.0-dev.8178 114 10/17/2022
4.7.0-dev.8170 112 10/17/2022
4.7.0-dev.8148 120 10/17/2022
4.7.0-dev.8133 118 10/17/2022
4.7.0-dev.8097 106 10/17/2022
4.7.0-dev.8034 124 10/11/2022
4.7.0-dev.8025 112 10/11/2022
4.7.0-dev.8009 130 10/10/2022
4.7.0-dev.8001 129 10/10/2022
4.7.0-dev.7959 112 10/4/2022
4.7.0-dev.7905 117 9/30/2022
4.7.0-dev.7875 108 9/29/2022
4.6.0 2,688 9/29/2022
4.6.0-dev.7832 122 9/29/2022
4.6.0-dev.7817 121 9/29/2022
4.6.0-dev.7779 136 9/27/2022
4.6.0-dev.7778 131 9/27/2022
4.6.0-dev.7734 123 9/26/2022
4.6.0-dev.7733 123 9/26/2022
4.6.0-dev.7677 124 9/20/2022
4.6.0-dev.7650 130 9/16/2022
4.6.0-dev.7626 184 9/14/2022
4.6.0-dev.7618 175 9/14/2022
4.6.0-dev.7574 115 9/13/2022
4.6.0-dev.7572 115 9/13/2022
4.6.0-dev.7528 107 9/12/2022
4.6.0-dev.7502 122 9/9/2022
4.6.0-dev.7479 135 9/8/2022
4.6.0-dev.7471 126 9/8/2022
4.6.0-dev.7447 112 9/7/2022
4.6.0-dev.7425 111 9/7/2022
4.6.0-dev.7395 105 9/6/2022
4.6.0-dev.7344 116 8/31/2022
4.6.0-dev.7329 110 8/31/2022
4.6.0-dev.7292 102 8/30/2022
4.6.0-dev.7240 117 8/29/2022
4.5.0 2,347 8/29/2022
4.5.0-dev.7216 114 8/27/2022
4.5.0-dev.7147 117 8/22/2022
4.5.0-dev.7134 118 8/17/2022
4.5.0-dev.7096 124 8/15/2022
4.5.0-dev.7070 130 8/11/2022
4.5.0-dev.7040 149 8/10/2022
4.5.0-dev.7011 128 8/3/2022
4.5.0-dev.6987 125 8/1/2022
4.5.0-dev.6962 134 7/29/2022
4.4.0 14,709 7/29/2022
4.4.0-dev.6901 132 7/25/2022
4.4.0-dev.6843 126 7/19/2022
4.4.0-dev.6804 128 7/19/2022
4.4.0-dev.6789 128 7/19/2022
4.4.0-dev.6760 124 7/19/2022
4.4.0-dev.6705 132 7/14/2022
4.4.0-dev.6663 158 6/24/2022
4.4.0-dev.6655 122 6/24/2022
4.3.0 9,903 6/24/2022
4.3.0-dev.multiple.buckets3 152 6/21/2022
4.3.0-dev.multiple.buckets2 118 6/17/2022
4.3.0-dev.multiple.buckets1 119 6/17/2022
4.3.0-dev.6631 119 6/22/2022
4.3.0-dev.6623 127 6/22/2022
4.3.0-dev.6374 130 6/13/2022
4.3.0-dev.6286 132 5/20/2022
4.2.0 2,399 5/20/2022
4.2.0-dev.6257 134 5/13/2022
4.2.0-dev.6248 131 5/12/2022
4.2.0-dev.6233 136 5/12/2022
4.2.0-dev.6194 133 5/10/2022
4.2.0-dev.6193 127 5/10/2022
4.2.0-dev.6158 2,842 5/6/2022
4.2.0-dev.6135 138 5/6/2022
4.2.0-dev.6091 139 4/28/2022
4.2.0-dev.6048 139 4/28/2022
4.2.0-dev.6047 139 4/28/2022
4.2.0-dev.5966 141 4/25/2022
4.2.0-dev.5938 142 4/19/2022
4.1.0 3,390 4/19/2022
4.1.0-dev.5910 331 4/13/2022
4.1.0-dev.5888 135 4/13/2022
4.1.0-dev.5887 143 4/13/2022
4.1.0-dev.5794 143 4/6/2022
4.1.0-dev.5725 148 3/18/2022
4.0.0 7,133 3/18/2022
4.0.0-rc3 392 3/4/2022
4.0.0-rc2 542 2/25/2022
4.0.0-rc1 203 2/18/2022
4.0.0-dev.5709 141 3/18/2022
4.0.0-dev.5684 151 3/15/2022
4.0.0-dev.5630 149 3/4/2022
4.0.0-dev.5607 141 3/3/2022
4.0.0-dev.5579 144 2/25/2022
4.0.0-dev.5556 148 2/24/2022
4.0.0-dev.5555 137 2/24/2022
4.0.0-dev.5497 135 2/23/2022
4.0.0-dev.5489 140 2/23/2022
4.0.0-dev.5460 142 2/23/2022
4.0.0-dev.5444 136 2/22/2022
4.0.0-dev.5333 140 2/17/2022
4.0.0-dev.5303 135 2/16/2022
4.0.0-dev.5280 148 2/16/2022
4.0.0-dev.5279 142 2/16/2022
4.0.0-dev.5241 243 2/15/2022
4.0.0-dev.5225 137 2/15/2022
4.0.0-dev.5217 142 2/15/2022
4.0.0-dev.5209 134 2/15/2022
4.0.0-dev.5200 134 2/14/2022
4.0.0-dev.5188 139 2/10/2022
4.0.0-dev.5180 138 2/10/2022
4.0.0-dev.5172 135 2/10/2022
4.0.0-dev.5130 133 2/10/2022
4.0.0-dev.5122 141 2/9/2022
4.0.0-dev.5103 148 2/9/2022
4.0.0-dev.5097 147 2/9/2022
4.0.0-dev.5091 140 2/9/2022
4.0.0-dev.5084 142 2/8/2022
3.4.0-dev.5263 147 2/15/2022
3.4.0-dev.4986 142 2/7/2022
3.4.0-dev.4968 157 2/4/2022
3.3.0 8,585 2/4/2022
3.3.0-dev.4889 145 2/3/2022
3.3.0-dev.4865 153 2/1/2022
3.3.0-dev.4823 156 1/19/2022
3.3.0-dev.4691 154 1/7/2022
3.3.0-dev.4557 1,364 11/26/2021
3.2.0 5,847 11/26/2021
3.2.0-dev.4533 4,859 11/24/2021
3.2.0-dev.4484 221 11/11/2021
3.2.0-dev.4475 193 11/10/2021
3.2.0-dev.4387 169 10/26/2021
3.2.0-dev.4363 184 10/22/2021
3.2.0-dev.4356 182 10/22/2021
3.1.0 1,784 10/22/2021
3.1.0-dev.4303 183 10/18/2021
3.1.0-dev.4293 186 10/15/2021
3.1.0-dev.4286 165 10/15/2021
3.1.0-dev.4240 204 10/12/2021
3.1.0-dev.4202 161 10/11/2021
3.1.0-dev.4183 197 10/11/2021
3.1.0-dev.4131 165 10/8/2021
3.1.0-dev.3999 180 10/5/2021
3.1.0-dev.3841 258 9/29/2021
3.1.0-dev.3798 179 9/17/2021
3.0.0 1,198 9/17/2021
3.0.0-dev.3726 519 8/31/2021
3.0.0-dev.3719 166 8/31/2021
3.0.0-dev.3671 178 8/20/2021
2.2.0-dev.3652 174 8/20/2021
2.1.0 1,545 8/20/2021
2.1.0-dev.3605 173 8/17/2021
2.1.0-dev.3584 179 8/16/2021
2.1.0-dev.3558 168 8/16/2021
2.1.0-dev.3527 214 7/29/2021
2.1.0-dev.3519 216 7/29/2021
2.1.0-dev.3490 166 7/20/2021
2.1.0-dev.3445 192 7/12/2021
2.1.0-dev.3434 226 7/9/2021
2.0.0 9,013 7/9/2021
2.0.0-dev.3401 206 6/25/2021
2.0.0-dev.3368 193 6/23/2021
2.0.0-dev.3361 197 6/23/2021
2.0.0-dev.3330 202 6/17/2021
2.0.0-dev.3291 201 6/16/2021
1.20.0-dev.3218 222 6/4/2021
1.19.0 918 6/4/2021
1.19.0-dev.3204 187 6/3/2021
1.19.0-dev.3160 172 6/2/2021
1.19.0-dev.3159 170 6/2/2021
1.19.0-dev.3084 831 5/7/2021
1.19.0-dev.3051 191 5/5/2021
1.19.0-dev.3044 194 5/5/2021
1.19.0-dev.3008 188 4/30/2021
1.18.0 1,228 4/30/2021
1.18.0-dev.2973 198 4/27/2021
1.18.0-dev.2930 187 4/16/2021
1.18.0-dev.2919 178 4/13/2021
1.18.0-dev.2893 170 4/12/2021
1.18.0-dev.2880 189 4/12/2021
1.18.0-dev.2856 183 4/7/2021
1.18.0-dev.2830 279 4/1/2021
1.18.0-dev.2816 183 4/1/2021
1.17.0 755 4/1/2021
1.17.0-dev.linq.17 790 3/18/2021
1.17.0-dev.linq.16 175 3/16/2021
1.17.0-dev.linq.15 211 3/15/2021
1.17.0-dev.linq.14 214 3/12/2021
1.17.0-dev.linq.13 238 3/11/2021
1.17.0-dev.linq.12 194 3/10/2021
1.17.0-dev.linq.11 190 3/8/2021
1.17.0-dev.2776 214 3/26/2021
1.17.0-dev.2713 227 3/25/2021
1.16.0-dev.linq.10 1,232 2/4/2021
1.15.0-dev.linq.9 211 2/4/2021
1.15.0-dev.linq.8 182 1/28/2021
1.15.0-dev.linq.7 195 1/27/2021
1.15.0-dev.linq.6 218 1/20/2021
1.15.0-dev.linq.5 235 1/19/2021
1.15.0-dev.linq.4 200 1/15/2021
1.15.0-dev.linq.3 176 1/14/2021
1.15.0-dev.linq.2 192 1/13/2021
1.15.0-dev.linq.1 208 1/12/2021