MathNet.Numerics.FSharp.Signed 4.15.0 The ID prefix of this package has been reserved for one of the owners of this package by NuGet.org.

F# Modules for Math.NET Numerics, the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net Framework 4.5 or higher and .Net Standard 1.6 or higher, on Windows, Linux and Mac. This package contains strong-named assemblies for legacy use cases (not recommended).

There is a newer prerelease version of this package available.
See the version list below for details.
Install-Package MathNet.Numerics.FSharp.Signed -Version 4.15.0
dotnet add package MathNet.Numerics.FSharp.Signed --version 4.15.0
<PackageReference Include="MathNet.Numerics.FSharp.Signed" Version="4.15.0" />
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add MathNet.Numerics.FSharp.Signed --version 4.15.0
The NuGet Team does not provide support for this client. Please contact its maintainers for support.
#r "nuget: MathNet.Numerics.FSharp.Signed, 4.15.0"
#r directive can be used in F# Interactive, C# scripting and .NET Interactive. Copy this into the interactive tool or source code of the script to reference the package.
// Install MathNet.Numerics.FSharp.Signed as a Cake Addin
#addin nuget:?package=MathNet.Numerics.FSharp.Signed&version=4.15.0

// Install MathNet.Numerics.FSharp.Signed as a Cake Tool
#tool nuget:?package=MathNet.Numerics.FSharp.Signed&version=4.15.0
The NuGet Team does not provide support for this client. Please contact its maintainers for support.

Release Notes

Precision: Round (with integer part rounding) ~Jon Larborn
Precision: RoundToMultiple, RoundToPower
F#: BigRational.FromDecimal ~Brian Berns

NuGet packages

This package is not used by any NuGet packages.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version History

Version Downloads Last updated
5.0.0-alpha02 64 7/11/2021
5.0.0-alpha01 118 6/27/2021
4.15.0 201 1/7/2021
4.14.0 217 1/1/2021
4.13.0 105 12/30/2020
4.12.0 301 8/2/2020
4.11.0 283 5/24/2020
4.10.0 256 5/24/2020
4.9.1 279 4/12/2020
4.9.0 314 10/13/2019
4.8.1 335 6/11/2019
4.8.0 333 6/2/2019
4.8.0-beta02 302 5/30/2019
4.8.0-beta01 308 4/28/2019
4.7.0 537 11/11/2018
4.6.0 462 10/19/2018
4.5.0 623 5/22/2018
4.4.1 593 5/6/2018
3.20.2 652 1/22/2018
3.20.1 606 1/13/2018
3.20.0 739 7/15/2017
3.20.0-beta01 555 5/31/2017
3.19.0 648 4/29/2017
3.18.0 618 4/9/2017
3.17.0 682 1/15/2017
3.16.0 624 1/3/2017
3.15.0 634 12/27/2016
3.14.0-beta03 612 11/20/2016
3.14.0-beta02 581 11/15/2016
3.14.0-beta01 590 10/30/2016
3.13.1 684 9/6/2016
3.13.0 632 8/18/2016
3.12.0 675 7/3/2016
3.11.1 760 4/24/2016
3.11.0 826 2/13/2016
3.10.0 778 12/30/2015
3.9.0 732 11/25/2015
3.8.0 732 9/26/2015
3.7.1 737 9/21/2015
3.7.0 904 5/9/2015
3.6.0 949 3/22/2015
3.5.0 881 1/10/2015
3.4.0 706 1/4/2015
3.3.0 742 11/26/2014
3.3.0-beta2 768 10/25/2014
3.3.0-beta1 697 9/28/2014
3.2.3 915 9/6/2014
3.2.2 732 9/5/2014
3.2.1 775 8/5/2014
3.2.0 762 8/5/2014
3.1.0 773 7/20/2014
3.0.2 756 6/26/2014
3.0.1 738 6/24/2014
3.0.0 715 6/21/2014
3.0.0-beta05 663 6/20/2014
3.0.0-beta04 684 6/15/2014
3.0.0-beta03 700 6/5/2014
3.0.0-beta02 710 5/29/2014
3.0.0-beta01 735 4/14/2014
3.0.0-alpha9 692 3/29/2014
3.0.0-alpha8 678 2/26/2014
3.0.0-alpha7 668 12/30/2013
3.0.0-alpha6 673 12/2/2013
3.0.0-alpha5 754 10/2/2013