Microsoft.ML.OnnxTransformer
2.0.1
See the version list below for details.
dotnet add package Microsoft.ML.OnnxTransformer --version 2.0.1
NuGet\Install-Package Microsoft.ML.OnnxTransformer -Version 2.0.1
<PackageReference Include="Microsoft.ML.OnnxTransformer" Version="2.0.1" />
paket add Microsoft.ML.OnnxTransformer --version 2.0.1
#r "nuget: Microsoft.ML.OnnxTransformer, 2.0.1"
// Install Microsoft.ML.OnnxTransformer as a Cake Addin
#addin nuget:?package=Microsoft.ML.OnnxTransformer&version=2.0.1
// Install Microsoft.ML.OnnxTransformer as a Cake Tool
#tool nuget:?package=Microsoft.ML.OnnxTransformer&version=2.0.1
ML.NET component for Microsoft.ML.OnnxRuntime.Managed library
Product | Versions Compatible and additional computed target framework versions. |
---|---|
.NET | net5.0 was computed. net5.0-windows was computed. net6.0 was computed. net6.0-android was computed. net6.0-ios was computed. net6.0-maccatalyst was computed. net6.0-macos was computed. net6.0-tvos was computed. net6.0-windows was computed. net7.0 was computed. net7.0-android was computed. net7.0-ios was computed. net7.0-maccatalyst was computed. net7.0-macos was computed. net7.0-tvos was computed. net7.0-windows was computed. |
.NET Core | netcoreapp2.0 was computed. netcoreapp2.1 was computed. netcoreapp2.2 was computed. netcoreapp3.0 was computed. netcoreapp3.1 was computed. |
.NET Standard | netstandard2.0 is compatible. netstandard2.1 was computed. |
.NET Framework | net461 was computed. net462 was computed. net463 was computed. net47 was computed. net471 was computed. net472 was computed. net48 was computed. net481 was computed. |
MonoAndroid | monoandroid was computed. |
MonoMac | monomac was computed. |
MonoTouch | monotouch was computed. |
Tizen | tizen40 was computed. tizen60 was computed. |
Xamarin.iOS | xamarinios was computed. |
Xamarin.Mac | xamarinmac was computed. |
Xamarin.TVOS | xamarintvos was computed. |
Xamarin.WatchOS | xamarinwatchos was computed. |
-
.NETStandard 2.0
- Google.Protobuf (>= 3.19.6)
- Microsoft.ML (>= 2.0.1)
- Microsoft.ML.OnnxRuntime.Managed (>= 1.10.0)
NuGet packages (13)
Showing the top 5 NuGet packages that depend on Microsoft.ML.OnnxTransformer:
Package | Downloads |
---|---|
Microsoft.ML.AutoML
ML.NET AutoML: Optimizes an ML pipeline for your dataset, by automatically locating the best feature engineering, model, and hyperparameters |
|
Microsoft.ML.DnnImageFeaturizer.AlexNet
ML.NET component for pretrained AlexNet image featurization |
|
Microsoft.ML.DnnImageFeaturizer.ResNet101
ML.NET component for pretrained ResNet101 image featurization |
|
Microsoft.ML.DnnImageFeaturizer.ResNet50
ML.NET component for pretrained ResNet50 image featurization |
|
Microsoft.ML.DnnImageFeaturizer.ResNet18
ML.NET component for pretrained ResNet18 image featurization |
GitHub repositories (4)
Showing the top 4 popular GitHub repositories that depend on Microsoft.ML.OnnxTransformer:
Repository | Stars |
---|---|
dotnet/machinelearning
ML.NET is an open source and cross-platform machine learning framework for .NET.
|
|
microsoft/psi
Platform for Situated Intelligence
|
|
microsoft/CryptoNets
CryptoNets is a demonstration of the use of Neural-Networks over data encrypted with Homomorphic Encryption. Homomorphic Encryptions allow performing operations such as addition and multiplication over data while it is encrypted. Therefore, it allows keeping data private while outsourcing computation (see here and here for more about Homomorphic Encryptions and its applications). This project demonstrates the use of Homomorphic Encryption for outsourcing neural-network predictions. The scenario in mind is a provider that would like to provide Prediction as a Service (PaaS) but the data for which predictions are needed may be private. This may be the case in fields such as health or finance. By using CryptoNets, the user of the service can encrypt their data using Homomorphic Encryption and send only the encrypted message to the service provider. Since Homomorphic Encryptions allow the provider to operate on the data while it is encrypted, the provider can make predictions using a pre-trained Neural-Network while the data remains encrypted throughout the process and finaly send the prediction to the user who can decrypt the results. During the process the service provider does not learn anything about the data that was used, the prediction that was made or any intermediate result since everything is encrypted throughout the process. This project uses the Simple Encrypted Arithmetic Library SEAL version 3.2.1 implementation of Homomorphic Encryption developed in Microsoft Research.
|
|
Azure/azure-stream-analytics
Azure Stream Analytics
|
Version | Downloads | Last updated |
---|---|---|
3.0.0-preview.23266.6 | 227 | 5/17/2023 |
3.0.0-preview.22621.2 | 1,862 | 12/22/2022 |
2.0.1 | 28,447 | 2/1/2023 |
2.0.1-preview.22573.9 | 877 | 11/24/2022 |
2.0.0 | 21,289 | 11/8/2022 |
2.0.0-preview.22551.1 | 138 | 11/1/2022 |
2.0.0-preview.22313.1 | 3,999 | 6/14/2022 |
1.7.1 | 70,880 | 3/9/2022 |
1.7.0 | 21,550 | 11/9/2021 |
1.7.0-preview.final | 241 | 10/22/2021 |
1.6.0 | 22,575 | 7/15/2021 |
1.5.5 | 16,523 | 3/4/2021 |
1.5.4 | 7,893 | 12/17/2020 |
1.5.2 | 18,988 | 9/11/2020 |
1.5.1 | 12,980 | 7/11/2020 |
1.5.0 | 23,511 | 5/26/2020 |
1.5.0-preview2 | 9,703 | 3/12/2020 |
1.5.0-preview | 7,445 | 12/26/2019 |
1.4.0 | 142,064 | 11/5/2019 |
1.4.0-preview2 | 3,663 | 10/8/2019 |
1.4.0-preview | 3,545 | 8/30/2019 |
1.3.1 | 11,077 | 8/6/2019 |
1.2.0 | 22,086 | 7/3/2019 |
0.13.0 | 5,041 | 6/4/2019 |
0.12.0 | 2,920 | 5/2/2019 |
0.12.0-preview | 1,436 | 4/2/2019 |
0.11.0 | 3,724 | 3/6/2019 |