#
cs-estimation-of-distribution-algorithms
1.0.1

`dotnet add package cs-estimation-of-distribution-algorithms --version 1.0.1`

`NuGet\Install-Package cs-estimation-of-distribution-algorithms -Version 1.0.1`

`<PackageReference Include="cs-estimation-of-distribution-algorithms" Version="1.0.1" />`

`paket add cs-estimation-of-distribution-algorithms --version 1.0.1`

`#r "nuget: cs-estimation-of-distribution-algorithms, 1.0.1"`

```
// Install cs-estimation-of-distribution-algorithms as a Cake Addin
#addin nuget:?package=cs-estimation-of-distribution-algorithms&version=1.0.1
// Install cs-estimation-of-distribution-algorithms as a Cake Tool
#tool nuget:?package=cs-estimation-of-distribution-algorithms&version=1.0.1
```

## cs-estimation-of-distribution-algorithms

Estimation of Distribution Algorithms implemented in C#

## Features

The current library support optimization problems in which solutions are either binary-coded or continuous vectors. The algorithms implemented for estimation-of-distribution are listed below:

- PBIL
- CGA (Compact Genetic Algorithm)
- BOA (Bayesian Optimization Algorithm)
- UMDA (Univariate Marginal Distribution Algorithm)
- Cross Entropy Method
- MIMIC

## Usage

### Solving Continuous Optimization

#### Running PBIL

The sample codes below shows how to solve the "Rosenbrock Saddle" continuous optmization problem using PBIL:

```
CostFunction_RosenbrockSaddle f = new CostFunction_RosenbrockSaddle();
int popSize = 8000;
PBIL s = new PBIL(popSize, f);
s.SolutionUpdated += (best_solution, step) =>
{
Console.WriteLine("Step {0}: Fitness = {1}", step, best_solution.Cost);
};
int max_iterations = 200;
s.Minimize(f, max_iterations);
```

Where the CostFunction_RosenbrockSaddle is the cost function that is defined as below:

```
public class CostFunction_RosenbrockSaddle : CostFunction
{
public CostFunction_RosenbrockSaddle()
: base(2, -2.048, 2.048) // 2 is the dimension of the continuous solution, -2.048 and 2.048 is the lower and upper bounds for the two dimensions
{
}
protected override void _CalcGradient(double[] solution, double[] grad) // compute the search gradent given the solution
{
double x0 = solution[0];
double x1 = solution[1];
grad[0] = 400 * (x0 * x0 - x1) * x0 - 2 * (1 - x0);
grad[1] = -200 * (x0 * x0 - x1);
}
// Optional: if not overriden, the default gradient esimator will be provided for gradient computation
protected override double _Evaluate(double[] solution) // compute the cost of problem given the solution
{
double x0 = solution[0];
double x1 = solution[1];
double cost =100 * Math.Pow(x0 * x0 - x1, 2) + Math.Pow(1 - x0, 2);
return cost;
}
}
```

#### Running CGA

The sample codes below shows how to solve the "Rosenbrock Saddle" continuous optmization problem using CGA:

```
CostFunction_RosenbrockSaddle f = new CostFunction_RosenbrockSaddle();
int n = 1000; // sample size for the distribution
CGA s = new CGA(n, f);
s.SolutionUpdated += (best_solution, step) =>
{
Console.WriteLine("Step {0}: Fitness = {1}", step, best_solution.Cost);
};
int max_iterations = 2000000;
s.Minimize(f, max_iterations);
```

#### Running UMDA

The sample codes below shows how to solve the "Rosenbrock Saddle" continuous optmization problem using UMDA:

```
CostFunction_RosenbrockSaddle f = new CostFunction_RosenbrockSaddle();
int popSize = 1000;
int selectionSize = 100;
UMDA s = new UMDA(popSize, selectionSize, f);
s.SolutionUpdated += (best_solution, step) =>
{
Console.WriteLine("Step {0}: Fitness = {1}", step, best_solution.Cost);
};
int max_iterations = 2000000;
s.Minimize(f, max_iterations);
```

#### Running MIMIC

The sample codes below shows how to solve the "Rosenbrock Saddle" continuous optmization problem using MIMIC:

```
CostFunction_RosenbrockSaddle f = new CostFunction_RosenbrockSaddle();
int n = 1000; // population size
MIMIC s = new MIMIC(n, f);
s.SolutionUpdated += (best_solution, step) =>
{
Console.WriteLine("Step {0}: Fitness = {1}", step, best_solution.Cost);
};
int max_iterations = 2000000;
s.Minimize(f, max_iterations);
```

#### Running CrossEntropyMethod

The sample codes below shows how to solve the "Rosenbrock Saddle" continuous optmization problem using CrossEntropyMethod:

```
CostFunction_RosenbrockSaddle f = new CostFunction_RosenbrockSaddle();
int sampleSize = 1000;
int selectionSize = 100;
CrossEntropyMethod s = new CrossEntropyMethod(sampleSize, selectionSize, f);
s.SolutionUpdated += (best_solution, step) =>
{
Console.WriteLine("Step {0}: Fitness = {1}", step, best_solution.Cost);
};
int max_iterations = 2000000;
s.Minimize(f, max_iterations);
```

### Solving Problems with Binary-encoded Solutions

#### Running PBIL

The samle codes below show how to solve a canonical optimization problem that look for solutions with minimum number of 1 bits in the solution:

```
int popSize = 8000;
int dimension = 50;
int eliteCount = 50;
PBIL s = new PBIL(popSize, dimension, eliteCount);
s.MaxIterations = 100;
s.SolutionUpdated += (best_solution, step) =>
{
Console.WriteLine("Step {0}: Fitness = {1}", step, best_solution.Cost);
};
s.Minimize((solution, constraints) =>
{
// solution is binary-encoded
double cost = 0;
// minimize the number of 1 bits in the solution
for(int i=0; i < solution.Length; ++i)
{
cost += solution[i];
}
return cost;
});
```

#### Running CGA

The samle codes below show how to solve a canonical optimization problem that look for solutions with minimum number of 1 bits in the solution:

```
int sampleSize = 8000;
int dimension = 50;
int sampleSelectionSize = 100;
CGA s = new CGA(sampleSize, dimension, sampleSelectionSize);
s.MaxIterations = 100;
s.SolutionUpdated += (best_solution, step) =>
{
Console.WriteLine("Step {0}: Fitness = {1}", step, best_solution.Cost);
};
s.Minimize((solution, constraints) =>
{
// solution is binary-encoded
double cost = 0;
// minimize the number of 1 bits in the solution
for(int i=0; i < solution.Length; ++i)
{
cost += solution[i];
}
return cost;
});
```

#### Running UMDA

The samle codes below show how to solve a canonical optimization problem that look for solutions with minimum number of 1 bits in the solution:

```
int sampleSize = 8000;
int dimension = 50;
int sampleSelectionSize = 100;
UMDA s = new UMDA(sampleSize, dimension, sampleSelectionSize);
s.MaxIterations = 100;
s.SolutionUpdated += (best_solution, step) =>
{
Console.WriteLine("Step {0}: Fitness = {1}", step, best_solution.Cost);
};
s.Minimize((solution, constraints) =>
{
// solution is binary-encoded
double cost = 0;
// minimize the number of 1 bits in the solution
for(int i=0; i < solution.Length; ++i)
{
cost += solution[i];
}
return cost;
});
```

## TODO

- BOA algorithm still has bugs, will need to be fixed in the future release.

Product |
Versions |
---|---|

.NET Framework | net452 net46 net461 net462 net463 net47 net471 net472 net48 net481 |

*Learn more about Target Frameworks and .NET Standard.*

This package has no dependencies.

###
**NuGet packages**

This package is not used by any NuGet packages.

###
**GitHub repositories**

This package is not used by any popular GitHub repositories.

Version | Downloads | Last updated |
---|---|---|

1.0.1 | 954 | 11/11/2017 |

Estimation of Distribution Algorithms in .NET 4.5.2