LLE.Native.Cu118 1.0.6

dotnet add package LLE.Native.Cu118 --version 1.0.6
                    
NuGet\Install-Package LLE.Native.Cu118 -Version 1.0.6
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="LLE.Native.Cu118" Version="1.0.6" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="LLE.Native.Cu118" Version="1.0.6" />
                    
Directory.Packages.props
<PackageReference Include="LLE.Native.Cu118" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add LLE.Native.Cu118 --version 1.0.6
                    
#r "nuget: LLE.Native.Cu118, 1.0.6"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package LLE.Native.Cu118@1.0.6
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=LLE.Native.Cu118&version=1.0.6
                    
Install as a Cake Addin
#tool nuget:?package=LLE.Native.Cu118&version=1.0.6
                    
Install as a Cake Tool

<div align="center">

<img src="https://raw.githubusercontent.com/gellston/LLE/main/icon.png" alt="LLE Icon" width="140" />

LLE (Low Light Enhancement)

AI-based Low-Light Enhancement inference API for <b>Windows x64</b>.

<a href="https://www.nuget.org/packages/LLE.Native.Cu118"> <img src="https://img.shields.io/nuget/v/LLE.Native.Cu118.svg?style=for-the-badge&logo=nuget&label=NuGet%20Native%20Cu118" /> </a> <img src="https://img.shields.io/badge/CUDA-11.8-76B900?style=for-the-badge&logo=nvidia" />

<br/>

<a href="https://www.nuget.org/packages/LLE.Managed.Cu118"> <img src="https://img.shields.io/nuget/v/LLE.Managed.Cu118.svg?style=for-the-badge&logo=nuget&label=NuGet%20Managed%20Cuda118" /> </a> <img src="https://img.shields.io/badge/CUDA-11.8-76B900?style=for-the-badge&logo=nvidia" />

<br/>

<img src="https://img.shields.io/badge/C%2B%2B-Used-00599C?style=for-the-badge&logo=c%2B%2B" /> <img src="https://img.shields.io/badge/C%2B%2B%2FCLI-Used-512BD4?style=for-the-badge" /> <img src="https://img.shields.io/badge/C%23-Used-512BD4?style=for-the-badge&logo=csharp" /> <img src="https://img.shields.io/badge/Python-Model%20Training-3776AB?style=for-the-badge&logo=python" />

</div>

Overview

LLE is a low-light image enhancement library that provides an inference API for an AI model trained in Python.

NuGet Packages (Native vs Managed)

  • LLE.Native.Cu118 (C++ / native)
    Native runtime + C++ API for Windows x64. Use this if you want to call LLE directly from C++.

  • LLE.Managed.Cuda118 (C# / .NET)
    A managed wrapper (C++/CLI) around the native runtime for a smoother .NET experience on Windows x64.

Both packages target Windows x64. GPU inference requires a compatible NVIDIA GPU environment (see below).

Sample Result (Before / After)

A quick visual comparison using the bundled sample images.

Low-light input Enhanced output
low_61 enhanced_low_61

If images don’t render on NuGet.org, switch these URLs to raw links:

Model Support (Now / Next)

  • Current: Low-light enhancement inference (native runtime)
  • Planned: Support improved low-light enhancement models over time (quality / speed / size trade-offs), and expand model options as the project evolves.

LLE is not a one-off release. Model quality and available variants may improve through updates.

Training Scripts

Dataset


Platform

  • Windows x64 only
    • Even if you use C# or C++, this library only works on Windows x64.

Runtime (CPU / CUDA)

CPU

  • CPU inference: no special runtime constraints (beyond standard Windows x64 requirements).

CUDA (GPU)

  • CUDA inference requires an NVIDIA GPU + driver.
  • You must install CUDA 11.8 on the target machine.
  • You must install cuDNN 8.5.0.96 (CUDA 11.x build) on the target machine.
  • This package does not bundle the NVIDIA CUDA / cuDNN redistributable DLLs.
    • Make sure CUDA/cuDNN DLLs are discoverable at runtime (e.g., in PATH or alongside your app).

If CUDA inference fails to load (e.g., DLL not found / entry point not found), the most common causes are:

  • NVIDIA driver is outdated/incompatible
  • CUDA/cuDNN versions do not match (CUDA 11.8 + cuDNN 8.5.0.96)
  • CUDA/cuDNN DLLs are not on PATH (or not deployed next to the executable)

Note: NVIDIA downloads may require an NVIDIA Developer account login.

CPU + CUDA Mixed Usage (Important)

  • LLE.Native.Cu118 and LLE.Managed.Cu118 can be used in a mixed mode:
    • You can run CPU inference regardless of CUDA availability.
    • To run CUDA inference, you must have a compatible NVIDIA driver + CUDA 11.8 + cuDNN 8.5.0.96 installed/configured.
    • This enables CPU fallback or choosing CPU/CUDA per workload.

Development Environment

  • Visual Studio 2026

Runtime Dependency (Required)

This library requires a separate redistribution package to run (native runtime DLLs, etc.). Download and install the redistribution package before using LLE.


NuGet Packages

LLE is not a “single one-off release”. The NuGet packages can be updated over time (bug fixes, performance improvements, new runtime variants, model upgrades).

Current / planned package list:

The list may expand (e.g., different CUDA versions) and existing packages may receive updates.


Installation

C++ (native)

Package Manager
Install-Package LLE.Native.Cu118
.NET CLI
dotnet add package LLE.Native.Cu118

.NET / C# (managed wrapper)

Package Manager
Install-Package LLE.Managed.Cuda118
.NET CLI
dotnet add package LLE.Managed.Cuda118

Usage in C++

#include <lle/memoryPool.h>
#include <lle/image.h>
#include <lle/lle.h>
#include <iostream>

int main()
{
    try {
        // create lle instance
        auto lle = lleapi::v1::lle::create();
        // load Zero-DCE++ model on CPU
        // (also supports loading an ONNX model from a file path)
        lle->setup(lleapi::v1::dlType::zeroDCE, lleapi::v1::device::cpu);
        // load color image
        auto input = lleapi::v1::image::imread(
            "C://github//dataset//lol_dataset//our485//low//low_15.png",
            lleapi::v1::colorType::color
        );
        // predict
        auto output = lle->predict(input);
        // save result image
        lleapi::v1::image::imwrite(
            "C://github//LLE//LLE//x64//Debug//result1.jpg",
            output
        );
        // cleanup internal instance
        lle->shutdown();
    }
    catch (std::exception ex) {
        std::cout << ex.what() << std::endl;
    }
}

Usage in C#

namespace ManagedTest
{
    internal class Program
    {
        static void Main(string[] args)
        {
            try
            {
                //// Create LLE Instance
                var lle = LLEAPI.V1.LLE.Create();
                //// load zerodce model and load on cpu
                //// its also support onnx model load from path
                lle.Setup(LLEAPI.V1.DlType.ZeroDCE, LLEAPI.V1.Device.Cpu);
                //// load color image
                var input = LLEAPI.V1.Image.Imread(
                    "C://github//dataset//lol_dataset//our485//low//low_15.png", 
                    LLEAPI.V1.ColorType.Color);
                //// predict 
                var output = lle.Predict(input);
                //// save image file on disk
                LLEAPI.V1.Image.Imwrite(
                    "C://github//LLE//LLE//x64//Debug//result1.jpg",
                    output);
                //// cleanup internal instance
                lle.Shutdown();
            }
            catch (Exception ex)
            {
                System.Diagnostics.Debug.WriteLine(ex.ToString());
            }
        }
    }
}


Roadmap

  • Provide a managed NuGet wrapper for .NET / C# (LLE.Managed.Cuda118)
  • Improve .NET API ergonomics (more idiomatic C# surface)
  • Add additional runtime variants (e.g., different CUDA versions)
  • Improve low-light enhancement model quality and provide more model options/variants

Research References / Acknowledgements

This project uses ideas and/or model architectures from academic research. If you use LLE in research, demos, or publications, please consider citing the original papers.

We sincerely thank the authors and contributors of these works for advancing low-light enhancement research:

Note: Please also comply with the licenses/terms of any upstream code, weights, and third-party libraries you use or redistribute.


License

This project is licensed under the MIT License (for the LLE source code).

Third-party notices (important)

This distribution may include third-party components and/or binaries.
Those components are NOT covered by the MIT License and remain subject to their respective licenses/terms.

Included third-party license texts are provided under the licenses/ folder:

  • CUDA-EULA.txt — NVIDIA CUDA runtime components (redistributables)
  • cudnn-LICENSE.txt — NVIDIA cuDNN runtime components
  • onnxruntime-LICENSE.txt — ONNX Runtime license
  • onnxruntime-ThirdPartyNotices.txt — ONNX Runtime third-party notices
  • opencv-LICENSE.txt — OpenCV license

By using this package, you agree to comply with all applicable third-party license terms in addition to the MIT License.


MIT License

Copyright (c) 2025–present gellston

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Product Compatible and additional computed target framework versions.
native native is compatible. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

This package has no dependencies.

NuGet packages

This package is not used by any NuGet packages.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.6 88 12/30/2025
1.0.5 86 12/29/2025
1.0.4 84 12/29/2025
1.0.2 118 12/26/2025
1.0.1 122 12/26/2025
1.0.0 124 12/26/2025