LLE.Native.Cu118
1.0.6
dotnet add package LLE.Native.Cu118 --version 1.0.6
NuGet\Install-Package LLE.Native.Cu118 -Version 1.0.6
<PackageReference Include="LLE.Native.Cu118" Version="1.0.6" />
<PackageVersion Include="LLE.Native.Cu118" Version="1.0.6" />
<PackageReference Include="LLE.Native.Cu118" />
paket add LLE.Native.Cu118 --version 1.0.6
#r "nuget: LLE.Native.Cu118, 1.0.6"
#:package LLE.Native.Cu118@1.0.6
#addin nuget:?package=LLE.Native.Cu118&version=1.0.6
#tool nuget:?package=LLE.Native.Cu118&version=1.0.6
<div align="center">
<img src="https://raw.githubusercontent.com/gellston/LLE/main/icon.png" alt="LLE Icon" width="140" />
LLE (Low Light Enhancement)
AI-based Low-Light Enhancement inference API for <b>Windows x64</b>.
<a href="https://www.nuget.org/packages/LLE.Native.Cu118"> <img src="https://img.shields.io/nuget/v/LLE.Native.Cu118.svg?style=for-the-badge&logo=nuget&label=NuGet%20Native%20Cu118" /> </a> <img src="https://img.shields.io/badge/CUDA-11.8-76B900?style=for-the-badge&logo=nvidia" />
<br/>
<a href="https://www.nuget.org/packages/LLE.Managed.Cu118"> <img src="https://img.shields.io/nuget/v/LLE.Managed.Cu118.svg?style=for-the-badge&logo=nuget&label=NuGet%20Managed%20Cuda118" /> </a> <img src="https://img.shields.io/badge/CUDA-11.8-76B900?style=for-the-badge&logo=nvidia" />
<br/>
<img src="https://img.shields.io/badge/C%2B%2B-Used-00599C?style=for-the-badge&logo=c%2B%2B" /> <img src="https://img.shields.io/badge/C%2B%2B%2FCLI-Used-512BD4?style=for-the-badge" /> <img src="https://img.shields.io/badge/C%23-Used-512BD4?style=for-the-badge&logo=csharp" /> <img src="https://img.shields.io/badge/Python-Model%20Training-3776AB?style=for-the-badge&logo=python" />
</div>
Overview
LLE is a low-light image enhancement library that provides an inference API for an AI model trained in Python.
- Name: LLE (Low Light Enhancement)
- Author / Maintainer: gellston
- Examples:
NuGet Packages (Native vs Managed)
LLE.Native.Cu118(C++ / native)
Native runtime + C++ API for Windows x64. Use this if you want to call LLE directly from C++.LLE.Managed.Cuda118(C# / .NET)
A managed wrapper (C++/CLI) around the native runtime for a smoother .NET experience on Windows x64.
Both packages target Windows x64. GPU inference requires a compatible NVIDIA GPU environment (see below).
Sample Result (Before / After)
A quick visual comparison using the bundled sample images.
| Low-light input | Enhanced output |
|---|---|
If images don’t render on NuGet.org, switch these URLs to raw links:
Model Support (Now / Next)
- Current: Low-light enhancement inference (native runtime)
- Planned: Support improved low-light enhancement models over time (quality / speed / size trade-offs), and expand model options as the project evolves.
LLE is not a one-off release. Model quality and available variants may improve through updates.
Training Scripts
- Training scripts used for model development are available here:
Dataset
- This project used the LOLI-Street low-light street image dataset:
Platform
- ✅ Windows x64 only
- Even if you use C# or C++, this library only works on Windows x64.
Runtime (CPU / CUDA)
CPU
- CPU inference: no special runtime constraints (beyond standard Windows x64 requirements).
CUDA (GPU)
- CUDA inference requires an NVIDIA GPU + driver.
- You must install CUDA 11.8 on the target machine.
- You must install cuDNN 8.5.0.96 (CUDA 11.x build) on the target machine.
- This package does not bundle the NVIDIA CUDA / cuDNN redistributable DLLs.
- Make sure CUDA/cuDNN DLLs are discoverable at runtime (e.g., in
PATHor alongside your app).
- Make sure CUDA/cuDNN DLLs are discoverable at runtime (e.g., in
If CUDA inference fails to load (e.g., DLL not found / entry point not found), the most common causes are:
- NVIDIA driver is outdated/incompatible
- CUDA/cuDNN versions do not match (CUDA 11.8 + cuDNN 8.5.0.96)
- CUDA/cuDNN DLLs are not on
PATH(or not deployed next to the executable)
CUDA / cuDNN Installation Links
Note: NVIDIA downloads may require an NVIDIA Developer account login.
CUDA Toolkit 11.8 (Windows x86_64)
https://developer.nvidia.com/cuda-11-8-0-download-archive?target_os=Windows&target_arch=x86_64cuDNN v8.5.0.96 (CUDA 11.x, Windows x86_64 zip)
Option A (recommended entry): cuDNN Archive (pick v8.5.0 for CUDA 11.x → Windows x86_64 (Zip))
https://developer.nvidia.com/rdp/cudnn-archiveOption B (direct file; will redirect to NVIDIA login):
https://developer.nvidia.com/compute/cudnn/secure/8.5.0/local_installers/11.7/cudnn-windows-x86_64-8.5.0.96_cuda11-archive.zip
CPU + CUDA Mixed Usage (Important)
LLE.Native.Cu118andLLE.Managed.Cu118can be used in a mixed mode:- You can run CPU inference regardless of CUDA availability.
- To run CUDA inference, you must have a compatible NVIDIA driver + CUDA 11.8 + cuDNN 8.5.0.96 installed/configured.
- This enables CPU fallback or choosing CPU/CUDA per workload.
Development Environment
- Visual Studio 2026
Runtime Dependency (Required)
This library requires a separate redistribution package to run (native runtime DLLs, etc.). Download and install the redistribution package before using LLE.
- Microsoft Visual C++ Redistributable (Latest Supported): https://learn.microsoft.com/ko-kr/cpp/windows/latest-supported-vc-redist?view=msvc-170
NuGet Packages
LLE is not a “single one-off release”. The NuGet packages can be updated over time (bug fixes, performance improvements, new runtime variants, model upgrades).
Current / planned package list:
LLE.Native.Cu118(Windows x64, native runtime, CPU, requires CUDA 11.8 + cuDNN 8.5.0.96 for GPU)
https://www.nuget.org/packages/LLE.Native.Cu118LLE.Managed.Cuda118(Windows x64, managed wrapper for .NET / C#; uses the native runtime under the hood)
https://www.nuget.org/packages/LLE.Managed.Cuda118
The list may expand (e.g., different CUDA versions) and existing packages may receive updates.
Installation
C++ (native)
Package Manager
Install-Package LLE.Native.Cu118
.NET CLI
dotnet add package LLE.Native.Cu118
.NET / C# (managed wrapper)
Package Manager
Install-Package LLE.Managed.Cuda118
.NET CLI
dotnet add package LLE.Managed.Cuda118
Usage in C++
#include <lle/memoryPool.h>
#include <lle/image.h>
#include <lle/lle.h>
#include <iostream>
int main()
{
try {
// create lle instance
auto lle = lleapi::v1::lle::create();
// load Zero-DCE++ model on CPU
// (also supports loading an ONNX model from a file path)
lle->setup(lleapi::v1::dlType::zeroDCE, lleapi::v1::device::cpu);
// load color image
auto input = lleapi::v1::image::imread(
"C://github//dataset//lol_dataset//our485//low//low_15.png",
lleapi::v1::colorType::color
);
// predict
auto output = lle->predict(input);
// save result image
lleapi::v1::image::imwrite(
"C://github//LLE//LLE//x64//Debug//result1.jpg",
output
);
// cleanup internal instance
lle->shutdown();
}
catch (std::exception ex) {
std::cout << ex.what() << std::endl;
}
}
Usage in C#
namespace ManagedTest
{
internal class Program
{
static void Main(string[] args)
{
try
{
//// Create LLE Instance
var lle = LLEAPI.V1.LLE.Create();
//// load zerodce model and load on cpu
//// its also support onnx model load from path
lle.Setup(LLEAPI.V1.DlType.ZeroDCE, LLEAPI.V1.Device.Cpu);
//// load color image
var input = LLEAPI.V1.Image.Imread(
"C://github//dataset//lol_dataset//our485//low//low_15.png",
LLEAPI.V1.ColorType.Color);
//// predict
var output = lle.Predict(input);
//// save image file on disk
LLEAPI.V1.Image.Imwrite(
"C://github//LLE//LLE//x64//Debug//result1.jpg",
output);
//// cleanup internal instance
lle.Shutdown();
}
catch (Exception ex)
{
System.Diagnostics.Debug.WriteLine(ex.ToString());
}
}
}
}
Roadmap
- Provide a managed NuGet wrapper for .NET / C# (
LLE.Managed.Cuda118) - Improve .NET API ergonomics (more idiomatic C# surface)
- Add additional runtime variants (e.g., different CUDA versions)
- Improve low-light enhancement model quality and provide more model options/variants
Research References / Acknowledgements
This project uses ideas and/or model architectures from academic research. If you use LLE in research, demos, or publications, please consider citing the original papers.
We sincerely thank the authors and contributors of these works for advancing low-light enhancement research:
Zero-DCE (CVPR 2020)
Chunle Guo, Chongyi Li, Jichang Guo, Chen Change Loy, Junhui Hou, Sam Kwong, Runmin Cong
Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement
Paper (CVF Open Access): https://openaccess.thecvf.com/content_CVPR_2020/html/Guo_Zero-Reference_Deep_Curve_Estimation_for_Low-Light_Image_Enhancement_CVPR_2020_paper.html
Project page: https://li-chongyi.github.io/Proj_Zero-DCE.htmlZero-DCE++ (TPAMI 2021/2022) (used by this API)
Chongyi Li, Chunle Guo, Chen Change Loy
Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation
arXiv: https://arxiv.org/abs/2103.00860
Project page: https://li-chongyi.github.io/Proj_Zero-DCE%2B%2B.html
DOI: https://doi.org/10.1109/TPAMI.2021.3063604
Note: Please also comply with the licenses/terms of any upstream code, weights, and third-party libraries you use or redistribute.
License
This project is licensed under the MIT License (for the LLE source code).
Third-party notices (important)
This distribution may include third-party components and/or binaries.
Those components are NOT covered by the MIT License and remain subject to their respective licenses/terms.
Included third-party license texts are provided under the licenses/ folder:
CUDA-EULA.txt— NVIDIA CUDA runtime components (redistributables)cudnn-LICENSE.txt— NVIDIA cuDNN runtime componentsonnxruntime-LICENSE.txt— ONNX Runtime licenseonnxruntime-ThirdPartyNotices.txt— ONNX Runtime third-party noticesopencv-LICENSE.txt— OpenCV license
By using this package, you agree to comply with all applicable third-party license terms in addition to the MIT License.
MIT License
Copyright (c) 2025–present gellston
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
| Product | Versions Compatible and additional computed target framework versions. |
|---|---|
| native | native is compatible. |
This package has no dependencies.
NuGet packages
This package is not used by any NuGet packages.
GitHub repositories
This package is not used by any popular GitHub repositories.