Tensor 0.4.11

.NET Standard 2.0
Install-Package Tensor -Version 0.4.11
dotnet add package Tensor --version 0.4.11
<PackageReference Include="Tensor" Version="0.4.11" />
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add Tensor --version 0.4.11
The NuGet Team does not provide support for this client. Please contact its maintainers for support.
#r "nuget: Tensor, 0.4.11"
#r directive can be used in F# Interactive, C# scripting and .NET Interactive. Copy this into the interactive tool or source code of the script to reference the package.
// Install Tensor as a Cake Addin
#addin nuget:?package=Tensor&version=0.4.11

// Install Tensor as a Cake Tool
#tool nuget:?package=Tensor&version=0.4.11
The NuGet Team does not provide support for this client. Please contact its maintainers for support.

Tensor (n-dimensional array) library for F#

     Core features:
       - n-dimensional arrays (tensors) in host memory or on CUDA GPUs
       - element-wise operations (addition, multiplication, absolute value, etc.)
       - basic linear algebra operations (dot product, SVD decomposition, matrix inverse, etc.)
       - reduction operations (sum, product, average, maximum, arg max, etc.)
       - logic operations (comparision, and, or, etc.)
       - views, slicing, reshaping, broadcasting (similar to NumPy)
       - scatter and gather by indices
       - standard functional operations (map, fold, etc.)

     Data exchange:
       - read/write support for HDF5 (.h5)
       - interop with standard F# types (Seq, List, Array, Array2D, Array3D, etc.)

     Performance:
       - host: SIMD and BLAS accelerated operations
         - by default Intel MKL is used (shipped with NuGet package)
         - other BLASes (OpenBLAS, vendor-specific) can be selected by configuration option
       - CUDA GPU: all operations performed locally on GPU and cuBLAS used for matrix operations

     Requirements:
       - Linux, MacOS or Windows on x64
       - Linux requires libgomp.so.1 installed.

     Additional algorithms are provided in the Tensor.Algorithm package.

Product Versions
.NET net5.0 net5.0-windows net6.0 net6.0-android net6.0-ios net6.0-maccatalyst net6.0-macos net6.0-tvos net6.0-windows
.NET Core netcoreapp2.0 netcoreapp2.1 netcoreapp2.2 netcoreapp3.0 netcoreapp3.1
.NET Standard netstandard2.0 netstandard2.1
.NET Framework net461 net462 net463 net47 net471 net472 net48
MonoAndroid monoandroid
MonoMac monomac
MonoTouch monotouch
Tizen tizen40 tizen60
Xamarin.iOS xamarinios
Xamarin.Mac xamarinmac
Xamarin.TVOS xamarintvos
Xamarin.WatchOS xamarinwatchos
Compatible target framework(s)
Additional computed target framework(s)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (3)

Showing the top 3 NuGet packages that depend on Tensor:

Package Downloads
DeepNet

Deep learning library for F#. Provides symbolic model differentiation, automatic differentiation and compilation to CUDA GPUs. Includes optimizers and model blocks used in deep learning. Make sure to set the platform of your project to x64.

RPlotTools

Tools for plotting using R from F#.

Tensor.Algorithm

Data types: - arbitrary precision rational numbers Matrix algebra (integer, rational): - Row echelon form - Smith normal form - Kernel, cokernel and (pseudo-)inverse Matrix decomposition (floating point): - Principal component analysis (PCA) - ZCA whitening Misc: - Bezout's identity - Loading of NumPy's .npy and .npz files.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
0.4.11 4,991 5/8/2018
0.4.11-v0.4.11-215 471 5/8/2018
0.4.11-symtensor-core-242 591 11/15/2018
0.4.11-symtensor-core-241 544 11/15/2018
0.4.11-symtensor-core-240 552 11/15/2018
0.4.11-symtensor-core-239 547 11/15/2018
0.4.11-symtensor-core-238 546 11/15/2018
0.4.11-symtensor-core-237 582 11/15/2018
0.4.11-symtensor-core-236 527 11/14/2018
0.4.11-symtensor-core-235 540 11/14/2018
0.4.11-symtensor-core-234 546 11/14/2018
0.4.11-symtensor-core-231 553 11/9/2018
0.4.11-symtensor-core-230 573 11/9/2018
0.4.11-symtensor-core-229 528 11/8/2018
0.4.11-symtensor-core-228 543 11/8/2018
0.4.11-symtensor-core-227 582 10/30/2018
0.4.11-symtensor-core-226 589 10/30/2018
0.4.11-symtensor-core-225 516 10/30/2018
0.4.11-develop-216 721 5/8/2018
0.4.10-develop-213 722 5/8/2018
0.4.10-develop-212 709 5/7/2018
0.4.10-develop-211 730 5/7/2018
0.3.0.712-master 602 9/1/2017
0.3.0.711-master 606 9/1/2017
0.3.0.710-master 584 9/1/2017
0.3.0.709-master 567 8/31/2017
0.3.0.708-master 592 8/30/2017
0.3.0.707-master 614 8/30/2017
0.3.0.706-master 591 8/30/2017
0.3.0.701-master 623 6/26/2017
0.3.0.700-master 641 6/22/2017
0.3.0.699-master 617 6/22/2017
0.3.0.698-master 614 6/21/2017
0.3.0.697-master 612 6/21/2017
0.3.0.696-master 647 6/21/2017
0.3.0.695-master 615 6/21/2017
0.3.0.694-master 610 6/21/2017
0.3.0.693-master 620 6/20/2017
0.3.0.692-master 610 6/19/2017
0.3.0.691-master 633 6/19/2017
0.3.0.690-master 625 6/19/2017
0.3.0.689-master 616 5/14/2017
0.3.0.688 6,200 5/14/2017
0.3.0.686-master 621 5/14/2017
0.2.0.591-master 622 4/19/2017
0.2.0.565-master 638 4/11/2017
0.2.0.556-master 623 3/21/2017
0.2.0.551-master 676 3/17/2017
0.2.0.540-master 611 3/15/2017
0.2.0.536-master 608 3/14/2017
0.2.0.519-master 634 3/2/2017
0.2.0.516-master 615 3/2/2017
0.2.0.499-master 638 2/13/2017
0.2.0.494-master 617 2/7/2017
0.2.0.479-master 641 2/1/2017
0.2.0.463-master 632 1/17/2017
0.2.0.431-master 709 12/2/2016
0.2.0.422-master 1,007 11/9/2016
0.2.0.421-master 942 11/9/2016
0.2.0.411-master 685 10/26/2016
0.2.0.400-master 636 10/26/2016
0.2.0.394-master 661 10/25/2016
0.2.0.382-master 643 10/21/2016
0.2.0.377-master 632 10/20/2016
0.2.0.323-master 628 10/11/2016
0.2.0.262-master 654 9/29/2016
0.2.0.248-master 653 9/27/2016
0.2.0.174-master 666 9/16/2016
0.2.0.128-master 658 9/8/2016
0.2.0.122-master 660 9/8/2016
0.2.0.121-master 644 9/7/2016
0.2.0.111-master 636 9/7/2016
0.2.0.105-ci 693 9/5/2016
0.2.0.97-ci 686 8/30/2016
0.2.0.96-ci 666 8/29/2016
0.2.0.90-ci 649 8/25/2016
0.2.0.89-ci 641 8/24/2016
0.2.0.88-ci 651 8/24/2016
0.2.0.87-ci 660 8/24/2016
0.2.0.86-ci 651 8/23/2016
0.2.0.85-ci 653 8/22/2016
0.2.0.84-ci 660 8/22/2016
0.2.0.83-ci 672 8/22/2016
0.2.0.82 1,526 8/22/2016
0.2.0.81-ci 682 8/19/2016
0.2.0.80-ci 679 6/27/2016
0.2.0.79-ci 669 6/27/2016
0.2.0.77-ci 668 6/22/2016
0.2.0.76-ci 679 6/22/2016
0.2.0.75 1,025 6/15/2016
0.2.0.74-ci 1,024 6/15/2016
0.2.0.73 1,227 6/15/2016
0.2.0.72 1,236 6/15/2016
0.2.0.71 1,205 6/14/2016
0.2.0.70 1,105 6/9/2016
0.2.0.69 1,063 6/9/2016
0.2.0.68 873 6/9/2016
0.2.0.67 1,358 6/8/2016
0.2.0.66-ci 670 6/8/2016
0.2.0.65-ci 676 6/8/2016
0.2.0.64-ci 722 6/8/2016
0.2.0.63-ci 656 6/7/2016
0.2.0.62 888 6/7/2016
0.2.0.61 870 6/6/2016
0.2.0.60 852 6/6/2016
0.2.0.59 858 6/6/2016
0.2.0.57 887 6/3/2016
0.2.0.56 861 6/3/2016
0.2.0.55 943 6/3/2016
0.2.0.54 886 6/3/2016
0.2.0.53 1,223 6/3/2016
0.2.0.52-ci 654 6/2/2016
0.2.0.51-ci 676 6/2/2016
0.2.0.50-ci 675 6/2/2016
0.2.0.49 1,227 5/31/2016
0.2.0.48-ci 711 5/31/2016
0.2.0.46-ci 690 5/31/2016
0.2.0.45 985 5/31/2016
0.2.0.44 994 5/31/2016
0.2.0.43 993 5/31/2016
0.2.0.42 995 5/30/2016
0.2.0.41 999 5/30/2016
0.2.0.40 1,013 5/30/2016
0.2.0.39 998 5/30/2016
0.2.0.38 982 5/30/2016
0.2.0.37 956 5/30/2016
0.2.0.36 963 5/25/2016
0.2.0.35 974 5/24/2016
0.2.0.34 1,014 5/24/2016
0.2.0.33 1,799 5/24/2016
0.2.0.32-ci 679 5/24/2016
0.1.26-ci 699 5/24/2016
0.1.24-ci 693 5/24/2016
0.1.19-ci 670 5/24/2016