Tensor 0.4.11

.NET Standard 2.0
NuGet\Install-Package Tensor -Version 0.4.11
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
dotnet add package Tensor --version 0.4.11
<PackageReference Include="Tensor" Version="0.4.11" />
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add Tensor --version 0.4.11
#r "nuget: Tensor, 0.4.11"
#r directive can be used in F# Interactive, C# scripting and .NET Interactive. Copy this into the interactive tool or source code of the script to reference the package.
// Install Tensor as a Cake Addin
#addin nuget:?package=Tensor&version=0.4.11

// Install Tensor as a Cake Tool
#tool nuget:?package=Tensor&version=0.4.11

Tensor (n-dimensional array) library for F#

     Core features:
       - n-dimensional arrays (tensors) in host memory or on CUDA GPUs
       - element-wise operations (addition, multiplication, absolute value, etc.)
       - basic linear algebra operations (dot product, SVD decomposition, matrix inverse, etc.)
       - reduction operations (sum, product, average, maximum, arg max, etc.)
       - logic operations (comparision, and, or, etc.)
       - views, slicing, reshaping, broadcasting (similar to NumPy)
       - scatter and gather by indices
       - standard functional operations (map, fold, etc.)

     Data exchange:
       - read/write support for HDF5 (.h5)
       - interop with standard F# types (Seq, List, Array, Array2D, Array3D, etc.)

     Performance:
       - host: SIMD and BLAS accelerated operations
         - by default Intel MKL is used (shipped with NuGet package)
         - other BLASes (OpenBLAS, vendor-specific) can be selected by configuration option
       - CUDA GPU: all operations performed locally on GPU and cuBLAS used for matrix operations

     Requirements:
       - Linux, MacOS or Windows on x64
       - Linux requires libgomp.so.1 installed.

     Additional algorithms are provided in the Tensor.Algorithm package.

Product Versions
.NET net5.0 net5.0-windows net6.0 net6.0-android net6.0-ios net6.0-maccatalyst net6.0-macos net6.0-tvos net6.0-windows
.NET Core netcoreapp2.0 netcoreapp2.1 netcoreapp2.2 netcoreapp3.0 netcoreapp3.1
.NET Standard netstandard2.0 netstandard2.1
.NET Framework net461 net462 net463 net47 net471 net472 net48
MonoAndroid monoandroid
MonoMac monomac
MonoTouch monotouch
Tizen tizen40 tizen60
Xamarin.iOS xamarinios
Xamarin.Mac xamarinmac
Xamarin.TVOS xamarintvos
Xamarin.WatchOS xamarinwatchos
Compatible target framework(s)
Additional computed target framework(s)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (3)

Showing the top 3 NuGet packages that depend on Tensor:

Package Downloads
DeepNet

Deep learning library for F#. Provides symbolic model differentiation, automatic differentiation and compilation to CUDA GPUs. Includes optimizers and model blocks used in deep learning. Make sure to set the platform of your project to x64.

RPlotTools

Tools for plotting using R from F#.

Tensor.Algorithm

Data types: - arbitrary precision rational numbers Matrix algebra (integer, rational): - Row echelon form - Smith normal form - Kernel, cokernel and (pseudo-)inverse Matrix decomposition (floating point): - Principal component analysis (PCA) - ZCA whitening Misc: - Bezout's identity - Loading of NumPy's .npy and .npz files.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
0.4.11 5,179 5/8/2018
0.4.11-v0.4.11-215 544 5/8/2018
0.4.11-symtensor-core-242 631 11/15/2018
0.4.11-symtensor-core-241 584 11/15/2018
0.4.11-symtensor-core-240 591 11/15/2018
0.4.11-symtensor-core-239 583 11/15/2018
0.4.11-symtensor-core-238 586 11/15/2018
0.4.11-symtensor-core-237 619 11/15/2018
0.4.11-symtensor-core-236 570 11/14/2018
0.4.11-symtensor-core-235 579 11/14/2018
0.4.11-symtensor-core-234 581 11/14/2018
0.4.11-symtensor-core-231 591 11/9/2018
0.4.11-symtensor-core-230 607 11/9/2018
0.4.11-symtensor-core-229 563 11/8/2018
0.4.11-symtensor-core-228 574 11/8/2018
0.4.11-symtensor-core-227 621 10/30/2018
0.4.11-symtensor-core-226 627 10/30/2018
0.4.11-symtensor-core-225 557 10/30/2018
0.4.11-develop-216 782 5/8/2018
0.4.10-develop-213 783 5/8/2018
0.4.10-develop-212 774 5/7/2018
0.4.10-develop-211 795 5/7/2018
0.3.0.712-master 650 9/1/2017
0.3.0.711-master 652 9/1/2017
0.3.0.710-master 631 9/1/2017
0.3.0.709-master 614 8/31/2017
0.3.0.708-master 637 8/30/2017
0.3.0.707-master 659 8/30/2017
0.3.0.706-master 636 8/30/2017
0.3.0.701-master 672 6/26/2017
0.3.0.700-master 686 6/22/2017
0.3.0.699-master 665 6/22/2017
0.3.0.698-master 662 6/21/2017
0.3.0.697-master 660 6/21/2017
0.3.0.696-master 695 6/21/2017
0.3.0.695-master 664 6/21/2017
0.3.0.694-master 656 6/21/2017
0.3.0.693-master 665 6/20/2017
0.3.0.692-master 651 6/19/2017
0.3.0.691-master 681 6/19/2017
0.3.0.690-master 673 6/19/2017
0.3.0.689-master 660 5/14/2017
0.3.0.688 6,326 5/14/2017
0.3.0.686-master 670 5/14/2017
0.2.0.591-master 665 4/19/2017
0.2.0.565-master 683 4/11/2017
0.2.0.556-master 664 3/21/2017
0.2.0.551-master 720 3/17/2017
0.2.0.540-master 659 3/15/2017
0.2.0.536-master 653 3/14/2017
0.2.0.519-master 678 3/2/2017
0.2.0.516-master 655 3/2/2017
0.2.0.499-master 682 2/13/2017
0.2.0.494-master 658 2/7/2017
0.2.0.479-master 677 2/1/2017
0.2.0.463-master 672 1/17/2017
0.2.0.431-master 753 12/2/2016
0.2.0.422-master 1,050 11/9/2016
0.2.0.421-master 985 11/9/2016
0.2.0.411-master 727 10/26/2016
0.2.0.400-master 682 10/26/2016
0.2.0.394-master 700 10/25/2016
0.2.0.382-master 690 10/21/2016
0.2.0.377-master 679 10/20/2016
0.2.0.323-master 668 10/11/2016
0.2.0.262-master 700 9/29/2016
0.2.0.248-master 697 9/27/2016
0.2.0.174-master 705 9/16/2016
0.2.0.128-master 704 9/8/2016
0.2.0.122-master 708 9/8/2016
0.2.0.121-master 684 9/7/2016
0.2.0.111-master 677 9/7/2016
0.2.0.105-ci 739 9/5/2016
0.2.0.97-ci 731 8/30/2016
0.2.0.96-ci 708 8/29/2016
0.2.0.90-ci 697 8/25/2016
0.2.0.89-ci 683 8/24/2016
0.2.0.88-ci 693 8/24/2016
0.2.0.87-ci 701 8/24/2016
0.2.0.86-ci 692 8/23/2016
0.2.0.85-ci 700 8/22/2016
0.2.0.84-ci 708 8/22/2016
0.2.0.83-ci 715 8/22/2016
0.2.0.82 1,622 8/22/2016
0.2.0.81-ci 722 8/19/2016
0.2.0.80-ci 721 6/27/2016
0.2.0.79-ci 715 6/27/2016
0.2.0.77-ci 714 6/22/2016
0.2.0.76-ci 723 6/22/2016
0.2.0.75 1,111 6/15/2016
0.2.0.74-ci 1,067 6/15/2016
0.2.0.73 1,322 6/15/2016
0.2.0.72 1,333 6/15/2016
0.2.0.71 1,292 6/14/2016
0.2.0.70 1,196 6/9/2016
0.2.0.69 1,159 6/9/2016
0.2.0.68 968 6/9/2016
0.2.0.67 1,461 6/8/2016
0.2.0.66-ci 714 6/8/2016
0.2.0.65-ci 718 6/8/2016
0.2.0.64-ci 763 6/8/2016
0.2.0.63-ci 695 6/7/2016
0.2.0.62 988 6/7/2016
0.2.0.61 964 6/6/2016
0.2.0.60 948 6/6/2016
0.2.0.59 940 6/6/2016
0.2.0.57 977 6/3/2016
0.2.0.56 952 6/3/2016
0.2.0.55 1,033 6/3/2016
0.2.0.54 982 6/3/2016
0.2.0.53 1,319 6/3/2016
0.2.0.52-ci 692 6/2/2016
0.2.0.51-ci 718 6/2/2016
0.2.0.50-ci 723 6/2/2016
0.2.0.49 1,333 5/31/2016
0.2.0.48-ci 754 5/31/2016
0.2.0.46-ci 732 5/31/2016
0.2.0.45 1,092 5/31/2016
0.2.0.44 1,095 5/31/2016
0.2.0.43 1,096 5/31/2016
0.2.0.42 1,117 5/30/2016
0.2.0.41 1,113 5/30/2016
0.2.0.40 1,136 5/30/2016
0.2.0.39 1,117 5/30/2016
0.2.0.38 1,107 5/30/2016
0.2.0.37 1,070 5/30/2016
0.2.0.36 1,070 5/25/2016
0.2.0.35 1,091 5/24/2016
0.2.0.34 1,128 5/24/2016
0.2.0.33 1,922 5/24/2016
0.2.0.32-ci 725 5/24/2016
0.1.26-ci 747 5/24/2016
0.1.24-ci 736 5/24/2016
0.1.19-ci 717 5/24/2016