skUnit 0.60.0-beta

This is a prerelease version of skUnit.
dotnet add package skUnit --version 0.60.0-beta
                    
NuGet\Install-Package skUnit -Version 0.60.0-beta
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="skUnit" Version="0.60.0-beta" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="skUnit" Version="0.60.0-beta" />
                    
Directory.Packages.props
<PackageReference Include="skUnit" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add skUnit --version 0.60.0-beta
                    
#r "nuget: skUnit, 0.60.0-beta"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package skUnit@0.60.0-beta
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=skUnit&version=0.60.0-beta&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=skUnit&version=0.60.0-beta&prerelease
                    
Install as a Cake Tool

skUnit

Build and Deploy NuGet version (skUnit) NuGet downloads Ask DeepWiki

skUnit is a semantic testing framework for .NET that makes it easy to test AI-powered applications using simple, readable Markdown scenarios.

Test anything that talks to AI:

  • IChatClient implementations (Azure OpenAI, OpenAI, Anthropic, etc.)
  • SemanticKernel applications and plugins
  • MCP (Model Context Protocol) servers
  • Custom AI integrations

Write your tests in Markdown, run them with any test framework (xUnit, NUnit, MSTest), and get live, readable results.

Quick Start

Here's a simple test scenario in Markdown:

# SCENARIO Mountain Chat

## [USER]
What is the tallest mountain?

## [ASSISTANT]
The tallest mountain is Everest! (OPTIONAL)

### ASSERT SemanticCondition
It mentions Mount Everest.

And here's how to test it with just a few lines of C#:

[Fact]
public async Task SimpleTest()
{
    var markdown = File.ReadAllText("mountain-chat.md");
    var scenarios = ChatScenario.LoadFromText(markdown);

    await ScenarioRunner.RunAsync(scenarios, systemUnderTestClient);
}

Note that in this example, the agent message is just for clarity and is not being used and is optional. So the following test scenario is equivalent:

## [USER]
What is the tallest mountain?

## [ASSISTANT]

### ASSERT SemanticCondition
It mentions Mount Everest.

That's it! skUnit handles the conversation, calls your AI, and verifies the response makes sense.

Key Features

1. Basic Chat Scenarios

Test single interactions with basic checks:

## [USER]
Is Everest a mountain or a Tree?

## [ASSISTANT]

### ASSERT ContainsAny
mountain

### ASSERT SemanticCondition
It mentions the mountain

2. JSON Validation

Test structured responses with powerful JSON assertions:

# SCENARIO User Info

## [USER]
Give me the most expensive product info as a JSON like this:
{"id": 12, "title": "The product", "price": 0, "description": "the description of the product"}

## [ASSISTANT]
{"id": 12, "title": "Surface Studio 2", "price": 3000, "description: "It is a very high-quality laptop"}

### ASSERT JsonCheck
{
  "id": ["NotEmpty"],
  "title": ["Contains", "Surface"],
  "price": ["Equal", 3000],
  "description": ["SemanticCondition", "It mentions the quality of the laptop."]
}

3. Function Call Testing

Verify your AI calls the right functions (MCP maybe) with the right parameters:

# SCENARIO Time Query

## [USER]
What time is it?

## [ASSISTANT]
It's currently 2:30 PM

### ASSERT FunctionCall
{
  "function_name": "get_current_time"
}

Even you can assert the passed parameters:

### ASSERT FunctionCall
{
  "function_name": "GetFoodMenu",
  "arguments": {
    "mood": ["Equals", "Happy"]
  }
}

4. Multi-Turn Conversations

Test complex conversations with multiple exchanges:

# SCENARIO Height Discussion

## [USER]
Is Eiffel tall?

## [ASSISTANT]
Yes it is

### ASSERT SemanticCondition
It agrees that the Eiffel Tower is tall or expresses a positive sentiment.

## [USER]
What about Everest?

## [ASSISTANT]
Yes it is tall too

### ASSERT SemanticCondition
It agrees that Everest is tall or expresses a positive sentiment.

skUnit Chat Scenario Structure

Each scenario can contain multiple sub-scenarios (conversation turns), and each response can have multiple ASSERT statements to verify different aspects of the AI's behavior.

5. MCP Server Testing

Test Model Context Protocol servers to ensure your tools work correctly:

# SCENARIO MCP Time Server

## [USER]
What time is it?

## [ASSISTANT]
It's currently 2:30 PM PST

### ASSERT FunctionCall
{
  "function_name": "current_time"
}

### ASSERT SemanticCondition
It mentions a specific time
// Setup MCP server testing
var mcp = await McpClientFactory.CreateAsync(clientTransport);
var tools = await mcp.ListToolsAsync();

var chatClient = new ChatClientBuilder(baseChatClient)
    .ConfigureOptions(options => options.Tools = tools.ToArray())
    .UseFunctionInvocation()
    .Build();

// In your test class constructor:
var assertionClient = /* assertion/evaluation model */;
ScenarioRunner = new ChatScenarioRunner(assertionClient);

// In your test:
await ScenarioRunner.RunAsync(scenarios, chatClient);

6. Mitigating Hallucinations with ScenarioRunOptions

LLM outputs can vary between runs. A single spurious response shouldn't fail your build if the model normally behaves correctly.

Use ScenarioRunOptions to execute each scenario multiple times and require only a percentage to pass. This adds statistical robustness without eliminating genuine regressions.

var options = new ScenarioRunOptions
{
    TotalRuns = 3,        // Run the whole scenario three times
    MinSuccessRate = 0.67 // At least 2 of 3 runs must pass
};

// In your test class constructor:
var assertionClient = /* assertion/evaluation model */;
ScenarioRunner = new ChatScenarioRunner(assertionClient);

// In your test:
await ScenarioRunner.RunAsync(scenarios, systemUnderTestClient, options: options);

Recommended starting points:

  • Deterministic / low-temp prompts: TotalRuns = 1, MinSuccessRate = 1.0
  • Function / tool invocation: TotalRuns = 3, MinSuccessRate = 0.67
  • Creative generation: TotalRuns = 5, MinSuccessRate = 0.6
  • Critical CI gating: TotalRuns = 5, MinSuccessRate = 0.8

Failure message example:

Only 40% of rounds passed, which is below the required success rate of 80%

Indicates a systematic issue (not just randomness) – investigate prompt, model settings, or assertions.

See full guide: Scenario Run Options

7. Readable Markdown Scenarios

Your test scenarios are just valid Markdown files - easy to read, write, and review:

Markdown Scenario Example

8. Live Test Results

Watch your tests run in real-time with beautiful, readable output:

Live Test Results

Installation & Setup

1. Install the Package

dotnet add package skUnit

2. Basic Setup

public class MyChatTests
{
    private readonly ChatScenarioRunner _scenarioRunner;
    private readonly IChatClient _chatClient;

    public MyChatTests(ITestOutputHelper output)
    {
        // Configure your AI client (Azure OpenAI, OpenAI, etc.)
        _chatClient = new AzureOpenAIClient(endpoint, credential)
            .GetChatClient(deploymentName)
            .AsIChatClient();
            
        _scenarioRunner = new ChatScenarioRunner(_chatClient, output.WriteLine);
    }

    [Fact]
    public async Task TestChat()
    {
        var markdown = File.ReadAllText("scenario.md");
        var scenarios = ChatScenario.LoadFromText(markdown);
        
        await _scenarioRunner.RunAsync(scenarios, _chatClient);
    }
}

3. Configuration

Set up your AI provider credentials:

{
  "AzureOpenAI_ApiKey": "your-api-key",
  "AzureOpenAI_Endpoint": "https://your-endpoint.openai.azure.com/",
  "AzureOpenAI_Deployment": "your-deployment-name"
}

Testing Multiple MCP Servers

Test complex scenarios involving multiple MCP servers working together:

// Combine multiple MCP servers
var timeServer = await McpClientFactory.CreateAsync(timeTransport);
var weatherServer = await McpClientFactory.CreateAsync(weatherTransport);

var allTools = new List<AITool>();
allTools.AddRange(await timeServer.ListToolsAsync());
allTools.AddRange(await weatherServer.ListToolsAsync());

var chatClient = new ChatClientBuilder(baseChatClient)
    .ConfigureOptions(options => options.Tools = allTools.ToArray())
    .UseFunctionInvocation()
    .Build();

Works with Any Test Framework

skUnit is completely test-framework agnostic! Here's the same test with different frameworks:

xUnit

public class GreetingTests
{
    private readonly ChatScenarioRunner ScenarioRunner;
    private readonly IChatClient systemUnderTestClient;

    public GreetingTests()
    {
        var assertionClient = /* assertion/evaluation model */;
        systemUnderTestClient = /* system under test model */;
        ScenarioRunner = new ChatScenarioRunner(assertionClient);
    }

    [Fact]
    public async Task TestGreeting()
    {
        var markdown = File.ReadAllText("greeting.md");
        var scenarios = ChatScenario.LoadFromText(markdown);

        await ScenarioRunner.RunAsync(scenarios, systemUnderTestClient);
    }
}

MSTest

public class GreetingTests : TestClass
{
    private readonly ChatScenarioRunner ScenarioRunner;
    private readonly IChatClient systemUnderTestClient;

    public GreetingTests()
    {
        var assertionClient = /* assertion/evaluation model */;
        systemUnderTestClient = /* system under test model */;
        ScenarioRunner = new ChatScenarioRunner(assertionClient, TestContext.WriteLine);
    }

    [TestMethod]
    public async Task TestGreeting()
    {
        var scenarios = await ChatScenario.LoadFromResourceAsync(
            "MyProject.Scenarios.greeting.md", 
            typeof(GreetingTests).Assembly);
            
        await ScenarioRunner.RunAsync(scenarios, systemUnderTestClient);
    }
}

NUnit

public class GreetingTests
{
    private readonly ChatScenarioRunner ScenarioRunner;
    private readonly IChatClient systemUnderTestClient;

    public GreetingTests()
    {
        var assertionClient = /* assertion/evaluation model */;
        systemUnderTestClient = /* system under test model */;
        ScenarioRunner = new ChatScenarioRunner(assertionClient, TestContext.WriteLine);
    }

    [Test]
    public async Task TestGreeting()
    {
        var markdown = File.ReadAllText("greeting.md");
        var scenarios = ChatScenario.LoadFromText(markdown);

        await ScenarioRunner.RunAsync(scenarios, systemUnderTestClient);
    }
}

The core difference is just the logging integration - use TestContext.WriteLine for MSTest, ITestOutputHelper.WriteLine for xUnit, or TestContext.WriteLine for NUnit. Both patterns show:

  • Assertion Client: Created once in the constructor for semantic evaluations
  • System Under Test Client: The client whose behavior you're testing, passed to RunAsync

Documentation

Requirements

  • .NET 8.0 or higher
  • AI Provider (Azure OpenAI, OpenAI, Anthropic, etc.) for semantic assertions
  • Test Framework (xUnit, NUnit, MSTest - your choice!)

Contributing

We welcome contributions! Check out our issues or submit a PR.

Examples

Check out the /demos folder for complete examples:

  • Demo.TddRepl - Interactive chat application testing
  • Demo.TddMcp - MCP server integration testing
  • Demo.TddShop - Complex e-commerce chat scenarios
Product Compatible and additional computed target framework versions.
.NET net8.0 is compatible.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages

This package is not used by any NuGet packages.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
0.60.0-beta 325 11/14/2025
0.59.0-beta 577 9/19/2025
0.58.0-beta 1,014 9/1/2025
0.57.0-beta 150 9/1/2025
0.56.0-beta 167 8/31/2025
0.55.0-beta 177 8/29/2025
0.54.0-beta 78 8/16/2025
0.53.0-beta 138 8/11/2025
0.52.0-beta 5,221 5/13/2025
0.51.0-beta 118 5/2/2025
0.50.0-beta 210 4/15/2025
0.49.0-beta 190 4/15/2025
0.47.0-beta 199 4/15/2025
0.43.0-beta 1,297 4/14/2025
0.42.0-beta 197 4/14/2025
0.40.0-beta 853 3/14/2025
0.39.0-beta 369 3/2/2025
0.38.0-beta 387 1/13/2025
0.37.0-beta 90 1/9/2025
0.35.0-beta 92 1/8/2025
0.34.0-beta 162 11/26/2024
0.33.0-beta 145 10/20/2024
0.32.0-beta 128 9/15/2024
0.31.0-beta 101 9/14/2024
0.30.0-beta 111 9/14/2024
0.29.0-beta 510 1/4/2024
0.28.0-beta 130 1/2/2024
0.27.0-beta 168 1/2/2024
0.26.0-beta 134 1/2/2024
0.25.0-beta 142 12/30/2023
0.24.0-beta 126 12/29/2023
0.23.0-beta 133 12/28/2023
0.22.0-beta 124 12/28/2023
0.21.0-beta 118 12/28/2023
0.20.0-beta 136 12/28/2023
0.19.0-beta 124 12/27/2023
0.18.0-beta 122 12/27/2023
0.16.0-beta 116 12/27/2023
0.15.0-beta 130 12/27/2023
0.14.0-beta 129 12/26/2023
0.13.0-beta 133 12/26/2023
0.12.0-beta 125 12/26/2023
0.11.0-beta 138 12/26/2023
0.10.0-beta 127 12/25/2023
0.9.0-beta 129 12/25/2023
0.8.0-beta 116 12/25/2023
0.7.0-beta 127 12/25/2023
0.6.0-beta 122 12/25/2023
0.5.0-beta 129 12/24/2023
0.4.0-beta 121 12/24/2023
0.3.0-beta 128 12/24/2023
0.1.0-beta 118 12/24/2023