DiffSharp.Backends.Torch 1.0.6-preview1838805210

This is a prerelease version of DiffSharp.Backends.Torch.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Torch --version 1.0.6-preview1838805210
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.6-preview1838805210
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.6-preview1838805210" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.6-preview1838805210" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.6-preview1838805210
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.6-preview1838805210"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package DiffSharp.Backends.Torch@1.0.6-preview1838805210
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.6-preview1838805210&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.6-preview1838805210&prerelease
                    
Install as a Cake Tool

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (5)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,459 3/26/2022
1.0.7-preview2044360861 591 3/26/2022
1.0.7-preview1873603133 647 2/21/2022
1.0.7-preview1872895008 628 2/20/2022
1.0.7-preview1872194677 624 2/20/2022
1.0.7-preview1867437105 607 2/19/2022
1.0.7-preview1838897476 624 2/14/2022
1.0.7-preview1838869913 611 2/14/2022
1.0.6 6,843 2/9/2022
1.0.6-preview1838805210 609 2/14/2022
1.0.6-preview1838790927 696 2/14/2022
1.0.6-preview1838781533 615 2/14/2022
1.0.6-preview1838761310 635 2/14/2022
1.0.6-preview1838574327 690 2/14/2022
1.0.6-preview1838238393 639 2/13/2022
1.0.6-preview1837967313 665 2/13/2022
1.0.6-preview1837932839 451 2/13/2022
1.0.6-preview1837857091 448 2/13/2022
1.0.5 3,788 2/9/2022
1.0.4 3,953 2/8/2022
1.0.3 5,056 2/8/2022
1.0.2 4,169 2/8/2022
1.0.1 5,020 11/8/2021
1.0.0-preview-987646120 784 6/30/2021
1.0.0-preview-964642900 752 6/23/2021
1.0.0-preview-964597118 582 6/23/2021
1.0.0-preview-964532207 647 6/23/2021
1.0.0-preview-964414624 654 6/23/2021
1.0.0-preview-962665709 503 6/23/2021
1.0.0-preview-961120541 550 6/22/2021
1.0.0-preview-958984202 589 6/22/2021
1.0.0-preview-783523654 728 4/25/2021
1.0.0-preview-783503343 636 4/25/2021
1.0.0-preview-783410550 667 4/25/2021
1.0.0-preview-781810429 614 4/25/2021
1.0.0-preview-775752139 704 4/22/2021
1.0.0-preview-774228953 669 4/22/2021
1.0.0-preview-769092916 654 4/21/2021
1.0.0-preview-768013090 632 4/20/2021
1.0.0-preview-762002995 621 4/19/2021
1.0.0-preview-761040762 685 4/18/2021
1.0.0-preview-761018834 695 4/18/2021
1.0.0-preview-756065403 589 4/16/2021
1.0.0-preview-755638011 616 4/16/2021
1.0.0-preview-752421465 646 4/15/2021
1.0.0-preview-748176085 643 4/14/2021
1.0.0-preview-746203897 618 4/13/2021
1.0.0-preview-746138300 647 4/13/2021
1.0.0-preview-745205599 604 4/13/2021
1.0.0-preview-739671157 635 4/12/2021
1.0.0-preview-712483117 634 4/2/2021
1.0.0-preview-699281085 583 3/29/2021
1.0.0-preview-699125312 636 3/29/2021
1.0.0-preview-698458610 680 3/29/2021
1.0.0-preview-697743517 700 3/29/2021
1.0.0-preview-697665469 635 3/29/2021
1.0.0-preview-690194555 637 3/26/2021
1.0.0-preview-688124591 622 3/25/2021
1.0.0-preview-687886352 619 3/25/2021
1.0.0-preview-681551353 639 3/24/2021
1.0.0-preview-681104545 667 3/23/2021
1.0.0-preview-680643606 707 3/23/2021
1.0.0-preview-679950457 630 3/23/2021
1.0.0-preview-669022451 643 3/19/2021
1.0.0-preview-643151273 538 3/11/2021
1.0.0-preview-633398743 607 3/8/2021
1.0.0-preview-633348953 638 3/8/2021
1.0.0-preview-621803110 682 3/4/2021
1.0.0-preview-611561611 675 3/1/2021
1.0.0-preview-611172961 583 3/1/2021
1.0.0-preview-593196134 557 2/23/2021
1.0.0-preview-589424126 606 2/22/2021
1.0.0-preview-589402583 633 2/22/2021
1.0.0-preview-586837684 590 2/21/2021
1.0.0-preview-586440747 640 2/21/2021
1.0.0-preview-498549439 635 1/20/2021
1.0.0-preview-485581354 679 1/14/2021
1.0.0-preview-392545720 742 11/30/2020
1.0.0-preview-392233243 692 11/30/2020
1.0.0-preview-392187079 762 11/30/2020
1.0.0-preview-390203270 681 11/29/2020
1.0.0-preview-387146713 777 11/27/2020
1.0.0-preview-386097798 812 11/26/2020
1.0.0-preview-385867359 819 11/26/2020
1.0.0-preview-385523380 700 11/26/2020
1.0.0-preview-384128234 802 11/25/2020
1.0.0-preview-374537774 767 11/20/2020
1.0.0-preview-374468367 659 11/20/2020
1.0.0-preview-368681212 717 11/17/2020
1.0.0-preview-368659044 812 11/17/2020
1.0.0-preview-364746088 838 11/15/2020
1.0.0-preview-364706087 777 11/15/2020
1.0.0-preview-363372268 692 11/14/2020
1.0.0-preview-362038354 737 11/13/2020
1.0.0-preview-362004577 730 11/13/2020
1.0.0-preview-361488593 685 11/13/2020
1.0.0-preview-360710530 727 11/13/2020
1.0.0-preview-359756455 718 11/12/2020
1.0.0-preview-358333968 771 11/11/2020
1.0.0-preview-358184921 773 11/11/2020
1.0.0-preview-358174946 733 11/11/2020
1.0.0-preview-349704450 832 11/6/2020
1.0.0-preview-349564717 809 11/6/2020
1.0.0-preview-343634015 821 11/3/2020
1.0.0-preview-343610434 735 11/3/2020
1.0.0-preview-328097867 1,032 10/26/2020
1.0.0-preview-322875134 773 10/22/2020
1.0.0-preview-315311536 716 10/19/2020
1.0.0-preview-309180753 758 10/15/2020
1.0.0-preview-309013019 790 10/15/2020
1.0.0-preview-308920132 705 10/15/2020
1.0.0-preview-308837132 768 10/15/2020
1.0.0-preview-308751690 736 10/15/2020
1.0.0-preview-308593840 745 10/15/2020
1.0.0-preview-299173506 830 10/10/2020
1.0.0-preview-292259854 836 10/6/2020
1.0.0-preview-291985511 783 10/6/2020
1.0.0-preview-291903007 754 10/6/2020
1.0.0-preview-291722399 790 10/6/2020
1.0.0-preview-284981464 735 10/2/2020
1.0.0-preview-284595614 717 10/2/2020
1.0.0-preview-280886714 791 9/30/2020
1.0.0-preview-278989673 733 9/29/2020
1.0.0-preview-277686264 733 9/29/2020
1.0.0-preview-277653295 737 9/29/2020
1.0.0-preview-275730148 805 9/28/2020
1.0.0-preview-275727262 779 9/28/2020
1.0.0-preview-267667710 821 9/22/2020
1.0.0-preview-263264614 834 9/20/2020
1.0.0-preview-263250971 851 9/20/2020
1.0.0-preview-262623253 722 9/19/2020
1.0.0-preview-258339834 759 9/16/2020
1.0.0-preview-258210544 796 9/16/2020
1.0.0-preview-258177528 835 9/16/2020
1.0.0-preview-258119380 832 9/16/2020
1.0.0-preview-256594931 786 9/16/2020
1.0.0-preview-256435175 862 9/15/2020
1.0.0-preview-253816091 756 9/14/2020
1.0.0-preview-253197654 780 9/14/2020
1.0.0-preview-247523274 719 9/10/2020
1.0.0-preview-247118168 806 9/9/2020
1.0.0-preview-246444372 850 9/9/2020
1.0.0-preview-246434361 808 9/9/2020
1.0.0-preview-246402060 729 9/9/2020
1.0.0-preview-245105781 741 9/8/2020
1.0.0-preview-244918410 809 9/8/2020
1.0.0-preview-243478925 731 9/7/2020
1.0.0-preview-243471084 765 9/7/2020
1.0.0-preview-243323135 866 9/7/2020
1.0.0-preview-1413494063 673 11/2/2021
1.0.0-preview-1405354284 610 10/31/2021
1.0.0-preview-1338129467 660 10/13/2021
1.0.0-preview-1327345305 753 10/11/2021
1.0.0-preview-1325686991 596 10/10/2021
1.0.0-preview-1324682939 745 10/10/2021
1.0.0-preview-1239345497 674 9/15/2021
1.0.0-preview-1227879651 658 9/13/2021
1.0.0-preview-1227810778 662 9/13/2021
1.0.0-preview-1222163389 646 9/10/2021
1.0.0-preview-1177844564 690 8/28/2021
1.0.0-preview-1176119659 597 8/28/2021
1.0.0-preview-1176116073 606 8/28/2021
1.0.0-preview-1176112166 574 8/28/2021
1.0.0-preview-1172193368 595 8/26/2021
1.0.0-preview-1168287221 584 8/25/2021
1.0.0-preview-1147185155 676 8/19/2021
1.0.0-preview-1133286135 719 8/15/2021
1.0.0-preview-1118120224 687 8/10/2021
1.0.0-preview-1111420036 601 8/9/2021
1.0.0-preview-1111385512 536 8/9/2021
1.0.0-preview-1111166736 590 8/9/2021
1.0.0-preview-1088380884 623 8/1/2021
1.0.0-preview-1088311063 626 8/1/2021
1.0.0-preview-1088021240 705 8/1/2021
1.0.0-preview-1083990424 642 7/31/2021
1.0.0-preview-1080710191 625 7/30/2021
1.0.0-preview-1080701269 651 7/30/2021
1.0.0-preview-1079028054 655 7/29/2021
1.0.0-preview-1079000079 657 7/29/2021
1.0.0-preview-1078977564 731 7/29/2021
1.0.0-preview-1069218438 561 7/26/2021
1.0.0-preview-1065692127 694 7/26/2021
1.0.0-preview-1054554829 609 7/22/2021
1.0.0-preview-1054460177 667 7/22/2021
1.0.0-preview-1044919966 647 7/19/2021
1.0.0-preview-1043697034 549 7/19/2021
1.0.0-preview-1001211231 645 7/5/2021
1.0.0-preview-1001204475 637 7/5/2021
0.9.5-preview-243240046 855 9/7/2020
0.9.5-preview-243219862 914 9/7/2020