MemoryIndexer 0.2.0
See the version list below for details.
dotnet add package MemoryIndexer --version 0.2.0
NuGet\Install-Package MemoryIndexer -Version 0.2.0
<PackageReference Include="MemoryIndexer" Version="0.2.0" />
<PackageVersion Include="MemoryIndexer" Version="0.2.0" />
<PackageReference Include="MemoryIndexer" />
paket add MemoryIndexer --version 0.2.0
#r "nuget: MemoryIndexer, 0.2.0"
#:package MemoryIndexer@0.2.0
#addin nuget:?package=MemoryIndexer&version=0.2.0
#tool nuget:?package=MemoryIndexer&version=0.2.0
Memory Indexer SDK
Long-term memory management for LLM applications via MCP (Model Context Protocol).
Features
- Semantic Search: Vector-based similarity search with hybrid BM25 + embedding retrieval
- Multiple Storage Backends: InMemory, SQLite-vec, and Qdrant
- Embedding Providers: Local (ONNX), Ollama, OpenAI, Azure OpenAI
- Multi-Tenant Support: Complete tenant isolation with CTE-based pre-filtering
- Security: PII detection and prompt injection defense
- Observability: Built-in OpenTelemetry tracing and metrics
- Evaluation: LoCoMo benchmark evaluation for memory retrieval quality
- MCP Integration: Ready-to-use MCP tools for Claude and other LLM clients
Quick Start
using MemoryIndexer.Sdk.Extensions;
using Microsoft.Extensions.Hosting;
var builder = Host.CreateApplicationBuilder(args);
// Add Memory Indexer with default settings
builder.Services.AddMemoryIndexer(options =>
{
options.Storage.Type = StorageType.SqliteVec;
options.Embedding.Provider = EmbeddingProvider.Local;
});
// Optional: Add OpenTelemetry observability
builder.Services.AddMemoryIndexerOtlpObservability("http://localhost:4317");
// Add MCP server
builder.Services.AddMcpServer()
.WithMemoryTools();
var host = builder.Build();
await host.RunAsync();
Configuration
{
"MemoryIndexer": {
"Storage": {
"Type": "SqliteVec",
"ConnectionString": "memories.db"
},
"Embedding": {
"Provider": "Local",
"Dimensions": 1024,
"CacheEnabled": true
},
"Search": {
"DefaultLimit": 10,
"MinimumScore": 0.5
}
}
}
MCP Tools
The SDK provides these MCP tools:
memory_store: Store new memories with semantic embeddingsmemory_recall: Retrieve relevant memories using semantic searchmemory_get: Get a specific memory by IDmemory_list: List memories with filteringmemory_update: Update memory content or importancememory_delete: Delete memories (soft or hard delete)memory_kg_extract: Extract knowledge graph entitiesmemory_kg_query: Query the knowledge graphmemory_context_optimize: Optimize context window usagememory_pii_detect: Detect PII in contentmemory_sanitize: Sanitize content for security
Requirements
- .NET 10.0 or later
- For local embeddings: ONNX Runtime compatible system
License
MIT License
| Product | Versions Compatible and additional computed target framework versions. |
|---|---|
| .NET | net10.0 is compatible. net10.0-android was computed. net10.0-browser was computed. net10.0-ios was computed. net10.0-maccatalyst was computed. net10.0-macos was computed. net10.0-tvos was computed. net10.0-windows was computed. |
-
net10.0
- MemoryIndexer.Core (>= 0.2.0)
- MemoryIndexer.Embedding (>= 0.2.0)
- MemoryIndexer.Intelligence (>= 0.2.0)
- MemoryIndexer.Mcp (>= 0.2.0)
- MemoryIndexer.Storage (>= 0.2.0)
- Microsoft.Extensions.Configuration.Binder (>= 10.0.1)
- Microsoft.Extensions.Hosting (>= 10.0.1)
- ModelContextProtocol (>= 0.5.0-preview.1)
- OpenTelemetry (>= 1.14.0)
- OpenTelemetry.Exporter.Console (>= 1.14.0)
- OpenTelemetry.Exporter.OpenTelemetryProtocol (>= 1.14.0)
- OpenTelemetry.Extensions.Hosting (>= 1.14.0)
- OpenTelemetry.Instrumentation.Http (>= 1.14.0)
NuGet packages (2)
Showing the top 2 NuGet packages that depend on MemoryIndexer:
| Package | Downloads |
|---|---|
|
MemoryIndexer.Sdk
Memory Indexer SDK - Full-featured long-term memory management for LLM applications via MCP. Includes InMemory/SQLite storage, extensible embedding/completion interfaces, and OpenTelemetry observability. |
|
|
IronHive.Agent
IronHive Agent - Reusable agent layer for AI-powered CLI tools |
GitHub repositories
This package is not used by any popular GitHub repositories.
v0.2.0:
- Hybrid scoring with keyword matching and content-type boosting
- Improved recall relevance for positive/confirmed information
- CONFIRMED memories prioritized over RULED OUT in retrieval
- 26 new unit tests for scoring service
- TwentyQuestionsGame sample demonstrating memory-only context
v0.1.0:
- Core memory storage with InMemory, SQLite-vec, and Qdrant backends
- MCP tools for store, recall, get, list, update, delete operations
- Embedding support: Local, Ollama, OpenAI providers
- Hybrid search with BM25 and vector similarity
- Knowledge graph with entity extraction
- Self-editing memory management
- Context window optimization
- PII detection and prompt injection defense
- Multi-tenant data isolation with CTE-based pre-filtering
- LoCoMo benchmark evaluation (SingleHop, MultiHop, Temporal, CrossSession, Factual)
- RAGAS-style retrieval metrics (Recall, Precision, MRR, NDCG)
- OpenTelemetry tracing and metrics