6 packages returned for Tags:"differentiation"

Deep learning library for F#. Provides symbolic model differentiation, automatic differentiation and compilation to CUDA GPUs. Includes optimizers and model blocks used in deep learning. Make sure to set the platform of your project to x64.
DiffSharp: Automatic Differentiation Library
DiffSharp is an automatic differentiation (AD) library. AD allows exact and efficient calculation of derivatives, by systematically invoking the chain rule of calculus at the elementary operator level during program execution. AD is different from numerical differentiation, which is prone to... More information
Foundational classes for financial, engineering, and scientific applications, including complex number classes, general vector and matrix classes, structured sparse matrix classes and factorizations, general sparse matrix classes and factorizations, general matrix decompositions, least squares... More information
Contains a matrix extension library, along with a suite of numerical matrix decomposition methods, numerical optimization algorithms for constrained and unconstrained problems, special functions and other tools for scientific applications. This package is part of the Accord.NET Framework.